
Università Degli Studi Di Verona

Dipartimento di Informatica

Doctoral Thesis - XXXV Cycle

Safe Deep Reinforcement Learning:

Enhancing the Reliability of Intelligent Systems

Author:
Davide Corsi

Advisor:
Prof. Alessandro Farinelli

April 2023





Abstract

In the last few years, the impressive success of deep reinforcement learning (DRL) agents in a
wide variety of applications has led to the adoption of these systems in safety-critical contexts
(e.g., autonomous driving, robotics, and medical applications), where expensive hardware and
human safety can be involved. In such contexts, an intelligent learning agent must adhere
to certain requirements that go beyond the simple accomplishment of the task and typically
include constraints on the agent’s behavior. Against this background, this thesis proposes a set
of training and validation methodologies that constitute a unified pipeline to generate safe and
reliable DRL agents. In the first part of this dissertation, we focus on the problem of constrained
DRL, leaving the challenging problem of the formal verification of deep neural networks for the
second part of this work.

As humans, in our growing process, the help of a mentor is crucial to learn effective strategies
to solve a problem while a learning process driven only by a trial-and-error approach usually
leads to unsafe and inefficient solutions. Similarly, a pure end-to-end deep reinforcement learning
approach often results in suboptimal policies, which typically translates into unpredictable, and
thus unreliable, behaviors. Following this intuition, we propose to impose a set of constraints
into the DRL loop to guide the training process. These requirements, which typically encode
domain expert knowledge, can be seen as suggestions that the agent should follow but is allowed
to sometimes ignore if useful to maximize the reward signal. A foundational requirement for
our work is finding a proper strategy to define and formally encode these constraints (which we
refer to as rules). In this thesis, we propose to exploit a formal language inherited from the
software engineering community: scenario-based programming (SBP). For the actual training,
we rely on the constrained reinforcement learning paradigm, proposing an extended version of
the Lagrangian PPO algorithm.

Recalling the parallelism with human beings, before being authorized to perform safety-
critical operations, we must obtain a certification (e.g., a license to drive a car or a degree to
perform medical operations). In the second part of this dissertation, we apply this concept in
a deep reinforcement learning context, where the intelligent agents are controlled by artificial
neural networks. In particular, we propose to perform a model selection phase after the training
to find models that formally respect some given safety requirements before the deployment.
However, DNNs have long been considered unpredictable black boxes and thus unsuitable for
safety-critical contexts. Against this background, we build upon the emerging field of formal
verification for neural networks to extend state-of-the-art approaches to robotic decision-making
contexts. We propose “ProVe”, a verification tool for decision-making DNNs that quantifies
the probability of violating the specified requirements. In the last chapter of this thesis, we
provide a complete case study on a popular robotic problem: “mapless navigation”. Here, we
show a concrete example of the application of our pipeline, starting from the definition of the
requirements to the training and the final formal verification phase, to finally obtain a provably
safe and effective agent.
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Chapter 1

INTRODUCTION

Artificial Intelligence and Robotics. The idea of creating artificial life has fascinated humankind
for decades. At the same time, there is something in these topics that threatens and scares us,
and this can be seen in movies, books, video games, and all the media that can come to our
minds. It is not surprising that Isaac Asimov, one of the most world-famous authors of science
fiction, had his first concern with building strict laws to guarantee the safety of his intelligent
machines. Today, of course, we are far from the scenarios narrated in his stories. However,
given the impressive achievement of AI systems in the last decade and the huge interest in this
technology expressed by society, industry, and academics, it is of paramount importance to take
care of the safety of these systems. For example, consider the recent and ongoing effort by the
European Union (EU) commission to clearly define an AI strategy for the EU, where safety and
reliability are crucial keywords [EU, 2022].

In this thesis, we focus on the problem of generating intelligent and reliable systems, focusing
on a specific technique: Deep Reinforcement Learning (DRL). Among the other machine-learning
approaches, DRL is probably the closest to how human beings learn. An agent interacts with
the environment through a trial-and-error process, learning to solve tasks from its mistakes and
driven only by a high-level objective represented with a reward signal. Although this learning
approach has shown groundbreaking results in a wide variety of tasks, ranging from robotics,
games, and autonomous driving, it suffers from a substantial limitation: the generated agents
are typically unpredictable and depending on the context, this assumes different relevance. This
thesis focuses on safety-critical tasks, where expensive hardware and human safety are typically
involved. In these contexts, unpredictability often means dangerous and potentially unsafe. In
this dissertation, we analyze this problem from two different perspectives, safe training and
validation, contributing to the same primary objective of our work: generating safe, reliable,
and trustworthy intelligent systems.

As humans, we learn from our experiences, making mistakes and learning from them. At the
same time, the help of a mentor, like a parent, a coach, or a teacher, saves us from wasting time
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CHAPTER 1. INTRODUCTION

following the wrong path and driving us to the proper (and safe) way of solving a problem. The
first part of this thesis focuses on the application of this concept in a machine-learning context.
Our intuition is that a pure trial-and-error approach (i.e., end-to-end) can be slow and often
generates unpredictable systems, producing agents that potentially act in a completely different
manner from those expected. This behavior causes distrust and thus limits the application of
these systems in real-world scenarios. In contrast, we aim to generate intelligent agents that
respect criteria beyond simply completing their assigned task, such as safety, human-friendly
behaviors, management of optional subtasks, and more. This objective drives the first half of
the thesis and, together with the second part, builds a complete pipeline for the generation of
safe intelligent agents.

Recalling the parallelism with humans, we now introduce the second part of our work.
Before being authorized to conduct dangerous (i.e., safety-critical) operations, we must obtain
different kinds of certifications, for example, a license before driving or a degree to perform
medical operations. Following this common-sense practice applied to human beings, in this
thesis, we propose to further test the intelligent systems after the training with a formal approach
that goes beyond a simple empyrical validation process. The second part of the thesis focuses
on the analysis and verification of artificial deep neural networks (i.e., DNNs), which are the
basic building blocks for modern DRL approaches (and ML in general). These tools are often
considered and treated as unpredictable black boxes hence severely hindering the reliability of
DRL systems. Our goal is to provide a formal (or, in some cases, probabilistic) certification to
guarantee that an intelligent agent respects some safety and behavioral requirements.

Finally, in the third part of this dissertation, we dive into a real-world case study. We face
the robotic problem of mapless navigation, i.e., the task of reaching a target in an environment
without any information about the map, relying only on local observations. We show that
our methodologies can be combined to generate intelligent agents that respect a set of given
requirements and to provide formal safety guarantees on their behavior before the deployment
on the actual platform in a real-world context.

1.1 CONTRIBUTIONS

As introduced in the first part of this chapter, the primary goal of this thesis is to provide
a set of methodologies to generate safe, predictable, and trustworthy agents through a Safe
Deep Reinforcement Learning process. Our contributions, and consequentially this dissertation,
can be subdivided into two parts, training and validation. Before summarizing the challenges,
methodologies, and achievements that constitute our work, we remark that the respect of these
additional requirements is a crucial problem when applied to safety-critical tasks, and our ar-
guments are weaker in classical problems (e.g., Atari games, Chess, Go). For example, a chess
player’s final goal is to win the game, and binding the strategies exploited to achieve this objec-
tive is not a crucial requirement. Quite the opposite, we are typically interested in finding new
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CHAPTER 1. INTRODUCTION

approaches to overcome the human players.

SAFE TRAINING AND CONSTRAINED OPTIMIZATION

Including additional requirements into the training loop is a complex challenge, both from a
theoretical and practical point of view. An opinion shared by a significant part of the community
is that “reward is enough” [Silver et al., 2021]. Although this is theoretically true, it has been
shown in different works [Corsi et al., 2022; Roy et al., 2021; Yerushalmi et al., 2022; Kamran
et al., 2022] that it becomes increasingly difficult for the optimization algorithm to guarantee
the respect of all the additional behaviors as the number of requirements increases. In what
follows, we provide a typical reward function that encodes some requirements in addition to the
reward function:

R(x) = r(x) +
∑
n

αnjn(x) (1.1)

here r(x) is the reward for the primary objective, jn(x) is the penalty for the nth additional
behavior, and αn is a multiplier to balance the magnitude of the penalties. In a recent work
from Roy et al. [2021], for example, the authors show that through only a reward engineering
process, when enforcing more than three behavioral requirements in the reward function, even
state-of-the-art algorithms struggle to find a good policy and (or) respect the desired behaviors.
Another example is from Yerushalmi et al. [2022]; in this paper, the authors propose adding a
reward penalty to discourage unwanted behavior. However, their results show that the agent
tends to ignore the requirements if the penalty is too small and, on the other hand, finds
only low-performing policies if the penalties cover the primary reward function. Crucially, the
authors highlight that finding the correct balance for the penalties is a challenging problem,
and the complexity of this task grows fast with the number of requirements. In the work of
Kamran et al. [2022], the authors highlight another crucial limitation of the reward engineering
approaches: the limited interpretability of the hyperparameter αn. This parameter appears
difficult to understand and can assume unbounded values, and this makes it even harder for
the users to find an effective value for the penalty. Moreover, they suggest that defining a
threshold for a constrained optimization problem is easier, given the direct connection between
a constraint and its bound. Finally, in our recent work Corsi et al. [2022], we further validate
the aforementioned results by applying these techniques to a real-world robotic problem.

A possible solution is to encode the constraints in the training or inference phase via hard-
coded shielding methods [Srinivasan et al., 2020; Thananjeyan et al., 2021]. Although these
approaches guarantee the respect of the requirements by construction, it is clearly in contrast
to the essence of reinforcement learning, the idea of allowing intelligent agents to learn original
strategies to solve a problem. In the dissertation of Marchesini [2022] and in the work of Garcıa
and Fernández [2015], the authors show that limiting the exploration phase leads to a significant
drop in the quality of the generated policies, and the application of hardcoded shielding is a
clear example of this unwanted behavior. In the case study work from Kamran et al. [2022], the
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CHAPTER 1. INTRODUCTION

authors show that restricting the search space often produces over-conservative behavior that
can potentially lead to a stalemate of the system (i.e., the producing agent prefers a no-action
policy). However, there are also less drastic shielding solutions. In the work of Simão et al.
[2021], the authors propose a state abstraction approach to focus the search space limitations
only on the cost-relevant configurations. Although this approach may mitigate the aforemen-
tioned problems, it still inherits some limitations of a shielding approach and assumes specific
prior knowledge about the state distribution in the environment.

Against this background, we propose to look at the problem from a different perspective. Our
first argument is that, given the numerical optimization nature of DRL, providing a “zero-cost”
result (i.e., a policy that never violates the requirements) is practically impossible. Following
the intuition of Achiam et al. [2017], we propose to look at our DRL process as a constrained
optimization problem in the following form:

max
x⃗

f(x⃗)

s.t. g(x⃗) < c
(1.2)

where f(x⃗) is the primary goal and g(x⃗) < c encodes some additioal requirements. While
with an analytic solution, the respect of the constraints is guaranteed, a numerical optimization
process (e.g., gradient ascent typically used in DRL) only ensures to reach a local minimum,
which usually translates into an approximation of the optimal policies. It is clear that, with a
suboptimal policy, it is impossible to ensure complete respect for the given requirements. As
support to our claims, we refer to the work of Ray et al. [2019], where the authors show that even
with a state-of-the-art algorithm, the given constraints can not always be respected through a
DRL approach for complex tasks.

Our second argument is that, in most cases, we are not even looking for a “zero-cost” result.
As discussed in the introduction of this thesis, our goal is to guide the training process by
providing suggestions into the training process and providing formal guarantees only before
the deployment. We thus propose subdividing the requirements into “soft constraints” and
“hard constraints”. Assuming that, as discussed before, securing the latter directly into the
training phase is not possible (without significantly hindering the performance [Marchesini, 2022;
Kamran et al., 2022]), we focus only on the “soft constraints” for the training while leaving the
consideration of the hard requirements before the deployment (i.e., the formal verification). We
discuss this last topic in the second part of this dissertation.

Following these intuitions, we propose to rely on the constrained optimization setup applying
a relaxation of the requirements. Crucially, our approach has a fundamental characteristic: it
does not look for a “zero-cost” result. Although this can appear as a limitation, we believe that
(recalling that the problem of the formal guarantees will be addressed in the second part of
the thesis) this is a strength of our method. First, this result can be obtained by a numerical
optimization method, which is necessary for DRL. Moreover, the agent is allowed to sometimes
ignore the requirements to maximize the final reward. In more detail, we propose to rewrite
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the requirements as an indicator function that assumes binary values at each time step. This
function assumes the value 0 if the requirement is respected and 1 otherwise. An important
advantage of this formulation is that, at the end of an episode, we estimate the probability of
violating the given requirement by normalizing the sum of these values by the number of steps.
In this setup, the objective is to keep this probability below a given threshold, limiting these
behaviors rather than reducing them to zero. To provide an intuition, suppose we train an agent
to drive a car for a motorsport race. A behavioral requirement can be the ideal trajectory that, in
most cases, should be followed. However, there are some cases where the agent should be allowed
to ignore this suggestion, for example, to complete an overtake or in difficult rainy conditions.
In this context, sometimes ignoring requirements is not only admissible but desirable, and our
approach allows us to control the frequency of these behavioral divergences.

A fundamental prerequisite for applying our method is to have a simple methodology to define
the requirements and calculate the probability of violating them. There are many solutions to
encode a function that represents a constraint (usually called cost function in literature). For
example, in the work of Ray et al. [2019], they propose a state-based encoding; if the current state
of the agent is a “forbidden state” (e.g., a specific area of the environment), the cost is increased
by a unit. This approach can be useful in some cases but does not suit well for behavioral
requirements, where not only the state is relevant but also the state-action combinations or
even sequence of them. Among all the various options, in our work, we chose to use “Scenario
Based Programming” (SBP) as a formal language to describe and encode the requirements as
rules for the system. A crucial feature of our method is that the computation of the rules does
not affect the exploration. The evaluation runs parallel to the system, counting the number of
violations without limiting the exploration power or the agent’s behavior (we refer to Part I for
an exhaustive discussion on this topic).

Our experiments show promising results, proving that it is possible to inject a set of re-
quirements into the training loop, generating agents that overall respect the desired behavior,
violating them in a limited number of cases and only if useful to maximize the reward. We
evaluated our approach in different environments, in particular in Chap. 8 we provide a detailed
analysis of a real-world robotic problem, exploiting the proposed methodologies both in simula-
tion and on the real platform. A final important remark is on the work of Yang et al. [2022a].
The authors highlight another important challenge: the respect of the safety requirement not
only at convergence but also during the learning process. By its nature, DRL requires a trial and
error process in order to learn the best actions to perform (or to avoid), and this is in contrast
with the idea of guaranteeing safety inside the training loop. However, the authors of the paper
propose to exploit a simulated (or controlled) environment where the agent is allowed to violate
the constraints in order to learn a safe policy. This “guide policy” can then be exploited as a
starting point for the actual training in the real safety-critical scenario. Crucially, this approach
is not in contrast with our methodologies, quite the opposite; our entire pipeline can be used in
the first pre-training phase.
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CHAPTER 1. INTRODUCTION

VALIDATION AND FORMAL GUARANTEES

Until now, we have focused on the problem of injecting behavioral requirements into the train-
ing loop. However, guaranteeing some “hard constraints” is crucial in safety-critical contexts.
Recalling the example of the motorsport race, following the ideal trajectory is a behavioral re-
quirement that, in some cases, can (or even should) be violated. In contrast, some behaviors,
such as moving directly into an obstacle, can not be tolerated, regardless of the context. These
strict requirements can be viewed as safety properties, encoded through input-output relations,
that describe some behaviors our agents must respect. We propose to evaluate the generated
models after the training to provide formal guarantees before the deployment in the real world
(e.g., on a robotic platform).

The intuition is that, even if it is impossible to generate “safe by construction” models
directly from the deep reinforcement learning loop, it is possible to minimize the frequency
of violations of the requirements. Consequently, by analyzing a set of trained models that
empirically shows zero-cost behavior, it is unlikely that no one formally guarantees to respect
these safety properties. In this thesis, we propose to perform a model selection phase after the
training and before the deployment to filter only the provably safe models.

Providing formal guarantees about the behavior of a DNN-based controller is challenging and,
also for this reason, it is common to look at the DNNs as unpredictable black boxes. However, in
the last few years, much work has been done in this direction to demystify and formally analyze
these complex and non-linear function approximators (i.e., deep neural networks). In particular,
the pioneering work of Katz et al. [2017] has brought attention to a new line of research, the
formal verification of neural networks. For our model selection phase, we rely on this concept,
formalizing the properties to verify as input-output relations, following the encoding proposed
by Liu et al. [2019]. Intuitively, a verification framework for DNNs tries to find an input point
that yields a violation of the safety requirement, analyzing the continuous and multi-dimensional
domain of the neural network function. If this violation point is found, the verification process
returns SAT, and the model is considered unsafe. Conversely, if this point does not exist, the
model can be considered safe. Although this approach has proven effective in a wide variety of
tasks [Ehlers, 2017; Tjeng et al., 2018; Katz et al., 2019; Wang et al., 2021], in the DRL context,
which is the focus of this dissertation, the standard approaches have shown some substantial
limitations that we address throughout the second part of the thesis. First, the state-of-the-art
approaches typically return a binary answer: safe or unsafe; however, in a DRL context where
the search space can be huge, it is often unlikely to obtain a model which is 100% safe. In
contrast, we might be interested in finding a safe model with a given probabilistic tolerance.
In this thesis, we propose “ProVe”, a novel algorithm that exploits the standard verifiers as a
backend to quantify the number of violations, replacing the decision problem with a counting
one. Finally, we face the problem of the properties definition and encoding in a DRL context,
where the evaluation must be performed on sequential invocations of the policy to represent the
interactions with the environment.
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In conclusion, we consider these two previously described processes (i.e., constrained training
and verification) as part of a single framework that generates safe, predictable, and trustworthy
agents. In Chap. 8, we extensively evaluated our pipeline on a real-world robotic problem
showing that, through our approach, it is possible to provide provably safe and high-performing
policies.

SUMMARY OF THE CONTRIBUTIONS

We summarize our contribution in the following points:

• We introduce a novel formalism to encode behavioral requirements by exploiting a formal
language: Scenario Based Modeling (SBP).

• We propose a novel method to inject safety and behavioral rules into a DRL loop, encoding
them through SBP. Our algorithm exploits the lagrangian relaxation of a constrained
optimization problem, presenting a novel constrained DRL algorithm.

• We propose a learning technique that combines evolutionary approaches and DRL to
increase the safety of the generated agents.

• We propose a tool for the formal verification of neural networks designed to verify sequen-
tial decision-making problems that typically characterize a DRL agent. Furthermore, we
present a methodology to quantify the number of violations, estimating the probability of
violating the given properties.

• We show how to encode and verify multi-step (or time-dependent) safety properties for
deep reinforcement learning in robotic contexts, where the system’s safety depends on a
sequence of actions and interactions with the environment.

• We present a unified framework that combines our training and verification methods to
generate safe and reliable systems (Fig. 1.1 presents a graphical overview of the pipeline).

• We validate the previously presented methodologies on a real-world robotic problem, ob-
taining agents that provably respect the desired requirements.

• We provide a public repository with the source code of the algorithms presented in this
work and the instructions to replicate our experimental results: http://github.com/d-corsi.

1.2 THESIS OUTLINE

The thesis begins with a review chapter on the foundational concept of the thesis. We provide a
critical analysis of the deep reinforcement learning algorithms, focusing on the evolution of the

7
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Formal Verification: 
"ProVe"

SIMULATION

DRL Loop:  
with behavioural
requirements

Violation Rate
Multi-Step Properties
Model Selection

Best Performing Models 
(empirical evaluation)

Best Performing and 
Provably Safe Models

TRAINING

VALIDATION

DEPLOYMENT

Figure 1.1: An illustrative overview of our pipeline that integrates the key contributions of the thesis;
following these methodologies, we obtain reliable models (i.e., DNNs) before the deployment.

approaches and the motivations behind their development. We then present the safety problem
for intelligent systems, with a particular focus on robotic problems. The rest of the thesis is
divided into three parts containing the main contributions of our work.

Part I, Safe Training for Deep Reinforcement Learning, addresses the problem of generating
safe and reliable intelligent agents. This part discusses different approaches and techniques for
training the agents.

• In Chap. 3 (“Preliminaries”), we introduce the fundamental information and crucial con-
cepts necessary to understand the rest of this part (e.g., constrained optimization, genetic
algorithms and constrained MDP).

• In Chap. 4 (“Constrained Reinforcement Learning”), we introduce one of the main con-
tributions of this dissertation, A novel approach to injecting prior knowledge, typically
human expertise, into the training loop. Our novel method combines techniques from the
“formal languages” community (i.e., scenario-based programming) with the recent trend
of constrained deep reinforcement learning. This line of work is related to the publication
of Corsi et al. [2022].

Part II, Formal Verification for Deep Reinforcement Learning, addresses the problem of
providing formal safety guarantees to the trained agents. This analysis is generally performed
after the training phase when the neural networks should be validated before the deployment.
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• In Chap. 5 (“The Verification Problem”), we introduce the definition and motivations for
the formal verification of deep neural networks, focusing on the challenges and the families
of approaches to solving this complex task.

• In Chap. 6 (“Verification of Decisions (ProVe)”), we present ProVe, a novel pipeline for
verifying deep neural networks, designed for the analysis of deep reinforcement learning
agents. ProVe is a high-level framework that allows the counting of possible violations to
safety requirements and can rely on state-of-the-art verification tools as a backend. The
idea is to obtain a metric to rank the safety of an agent, overcoming the limits of the
binary answer returned by standard methods (i.e., safe or unsafe). This line of work is
related to the publication of Corsi et al. [2021] and appears in the case study articles from
Pore et al. [2021] and Marchesini et al. [2021a].

• In Chap. 7 (“Time-Dependent Properties”), we propose a framework for the formal veri-
fication of multi-step safety properties. In the context of deep reinforcement learning, the
standard formulation for the safety requirements as input-output relations is a substantial
limitation. An intelligent agent is supposed to interact with the environment with a long-
term horizon, performing sequences of actions. To overcome this limitation, we propose
extending the approach from Amir et al. [2021] to a robotic context, where the trajectories
selected by the agents are the crucial behavior to analyze. This line of work is related to
the publications of Marchesini et al. [2021a] and Marzari et al. [2022].

Part III, Application to Robotics, presents a complete case study where we apply all the
techniques and methodologies presented throughout the thesis. In particular, we exploit the
training approach presented in Chap. 4, followed by a model-selection phase based on the veri-
fication frameworks presented in Chap. 6 and Chap. 7. In this chapter, we analyze the popular
robotic problem of mapless navigation, applied on the research platform TurtleBot3, both in
simulation and on the actual robot. Following our pipeline, we show that obtaining safe, reli-
able, and predictable intelligent agents is possible without compromising the performance. This
line of work is related to the publication of Amir et al. [2022]. Finally, in Chap. 9, “Conclusion
and Future Direction” we summarize the results we presented in the thesis, discussing the future
research directions and opportunities.

1.3 PUBLICATIONS

Most of the contributions presented in this thesis have been published in top-level international
conferences, e.g., IJCAI, ICLR, AAAI, TACAS, UAI, and IROS; some works are submitted and
currently under review. The aforementioned publications are presented in the following list,
where (*) denotes an equal contribution between the authors:
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• The #DNN-Verification problem: Counting Unsafe Inputs for Deep Neural Networks
L. Marzari*, D. Corsi*, F. Cicalese, A. Farinelli
International Joint Conference on Artificial Intelligence (IJCAI) 2023.

• Verifying Learning-Based Robotic Navigation Systems
G. Amir*, D. Corsi*, R. Yerushalmi, L. Marzari, D. Harel, A. Farinelli, G. Katz
International Conference on Tools and Algorithms for the Construction and Analysis of
Systems (TACAS), 2023.

• Curriculum Learning for Safe Mapless Navigation
L. Marzari, D. Corsi, E. Marchesini, A. Farinelli
ACM/SIGAPP Symposium on Applied Computing (ACM SAC), 2022.

• Exploring Safer Behaviors for Deep Reinforcement Learning
E. Marchesini*, D. Corsi*, A. Farinelli
Association for the Advancement of Artificial Intelligence (AAAI), 2022.

• Formal verification of Neural Networks for Safety-Critical Tasks in Deep Reinforcement
Learning
D. Corsi, E. Marchesini, A. Farinelli
Conference on Uncertainty in Artificial Intelligence (UAI), 2021.

• Benchmarking Safe Deep Reinforcement Learning in Aquatic Navigation
D. Corsi*, E. Marchesini*, A. Farinelli
International Conference on Intelligent Robots and Systems (IROS), 2021.

• Safe Reinforcement Learning Using Formal Verification for Tissue Retraction in Autonomous
Robotic-Assisted Surgery.
A. Pore*, D. Corsi*, E. Marchesini*, D. Dall’Alba, A. Casals, A. Farinelli, P. Fiorini
International Conference on Intelligent Robots and Systems (IROS), 2021.

• Formal Verification for Safe Deep Reinforcement Learning in Trajectory Generation.
D. Corsi, E. Marchesini, A. Farinelli, P. Fiorini
International Conference on Robotic Computing (IRC), 2020.

• Genetic Soft Updates for Policy Evolution in Deep Reinforcement Learning.
E. Marchesini, D. Corsi, A. Farinelli
International Conference on Learning Representations (ICLR), 2020.

• Double Deep Q-Network for Trajectory Generation of a Commercial 7DOF Redundant
Manipulator.
E. Marchesini, D. Corsi, A. Benfatti, A. Farinelli, P. Fiorini
International Conference on Robotic Computing (IRC), 2019.

10



CHAPTER 1. INTRODUCTION

Following the list of the papers submitted and under the review process:

• Constrained Reinforcement Learning and Formal Verification for Safe Colonoscopy Navi-
gation
D. Corsi*, L. Marzari*, A. Pore*, A. Farinelli, A. Casals, P. Fiorini, D. Dall’Alba
The paper is currently submitted and under the review process, available at:
https://arxiv.org/abs/2206.09603, 2023.

• Constrained Reinforcement Learning for Robotics via Scenario-Based Programming
D. Corsi*, R. Yerushalmi*, G. Amir, A. Farinelli, D. Harel, G. Katz
The paper is currently submitted and under the review process, available at:
https://arxiv.org/abs/2303.03207, 2023.

- last update May 11, 2023-

11





Chapter 2

FOUNDATIONS AND CRITICAL ANALYSIS

In this chapter, we define the main concepts and methodologies that constitute the foundations
of the thesis. We begin defining the concepts of neural networks and machine learning; then,
we dive into the deep reinforcement learning problem, presenting the state-of-the-art methods
and showing the evolution of these algorithms. We describe the problems faced in the thesis,
focusing on robotics tasks where safety is a critical requirement. Finally, we discuss the problem
of simulation, an important component of reinforcement learning, and the sim-to-real transfer,
which is a crucial challenge in this field.

Before introducing the problem of Deep Reinforcement Learning, which is the crucial com-
ponent of this dissertation, we must define two preliminary concepts: Machine Learning and
Neural Networks. Machine Learning (ML) is an emerging branch of computer science and Ar-
tificial Intelligence (AI) that has recently gained popularity. Given the extraordinary results
researcher, engineers, and enthusiasts, were able to achieve using this kind of approaches, rang-
ing from computer vision [Simonyan and Zisserman, 2014], autonomous driving [Bojarski et al.,
2016], games playing [Mnih et al., 2013] and many others [Deng and Liu, 2018; Nandkumar
et al., 2021], this research area has rapidly grown. The idea behind a ML approach is to itera-
tively refine and improve the system’s accuracy based on algorithms and data. Machine learning
and Deep Learning (DL) are often used as synonymous; however, they are different concepts
or, more precisely, DL is a subfield of ML. The crucial difference between these two concepts is
that DL exploits a powerful tool to learn, which is the foundational concept of this thesis: Deep
Neural Network (DNN).

2.1 NEURAL NETWORKS

Providing a definition for deep neural network is a challenging task, not because a DNN is difficult
to define, quite the opposite, but more because different users can attribute different meanings
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to this powerful tool. Focusing on the definitions that matter for this thesis, we see a neural
network from a mathematical point of view, defining it as a complex non-linear function [Hornik
et al., 1989]. Alternatively, from a computer scientist perspective, a DNN is a computational
directed graph consisting of multiple layers [LeCun et al., 2015]. However, from an high-level
point of view, a DNN is just a black box, and it is not a trivialization. An entire branch of the DL
community is devoted to developing novel algorithms that are agnostic to the low-level structure
of the networks [Mnih et al., 2013; Schulman et al., 2017]. Moreover, different tools have been
developed that allow researchers and engineers to focus on applying these methodologies [Pore
et al., 2022; Marchesini and Farinelli, 2020] without the need to learn the low-level theory behind
DNNs, obtaining exciting scientific results on the possible applications. From a biological point
of view, it is an attempt o reproduce a simplified version of the neurons and connections which
constitute the human brain [Sutton and Barto, 2018]. Although very far from the purpose of
this dissertation, there is also a philosophical perspective, which sees DNNs as a potential tool
for replicating human consciousness, trying to study all the consequences that this could lead
to [Binns, 2018].

In the following discussion, we focus on the Multi-Layer Perceptron (MLP), sometimes re-
ferred to as feed-forward DNN. MLP is the most common architecture, constituted only of
forward connections (refer to Fig. 2.2 for a high-level intuition of the structure) [Hornik et al.,
1989]. There are, however, more sophisticated implementations of the networks, such as Re-
current Neural Networks (RNN) that include backward connections [Lai et al., 2015], or Con-
volutional Neural Networks (CNN), specifically designed for image recognition [Simonyan and
Zisserman, 2014].

Formally, a neural network fθ(x) is a function, defined over the parameters θ, that maps an
input x (typically a vector) to an output y. The computation is performed through a sequence
of operations for each layer of the DNN:

a(l) = g(W (l)a(l−1) + b(l)) (2.1)

where (i) a(l)−1 is the input vector to the layer l; (ii) the weights matrixW and the biases b are the
parameters of the function (conventionally denoted together as θ = [W (0), ...W (n), b(0), ...b(n)]);
and (iii) g is the activation function, that provides the non-linearity; notice that a(0) is the
input and a(n) is the output. The activation function is a fundamental component for DNNs,
introduced in the previous definition with g. These support functions introduce the non-linearity
in DNN, which is crucial to guarantee the expressiveness of the function [Hornik et al., 1989].
There are different types of functions; Fig. 2.1 provides an overview of three examples of common
activations. In this work, we focus on the Rectified Linear Unit (ReLU), defined as ReLu(x) =
max(0, x). Our choice is motivated by different reasons: (i) it has been shown that it is effective,
yet simple to compute [Banerjee et al., 2019]; (ii) it is easy to implement and differentiate for
the learning process; (iii) it is piece-wise, which is a crucial property for the formal verification1.

1This topic will be discussed in Part II.
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(a) sigmoid (b) ReLU (c) tanh

Figure 2.1: A graphical overview of different common activation functions, sigmoid, ReLU and hyperbolic
tangent (tanh).

Fig. 2.2 shows a toy example to understand better how a neural network computes the
output. Suppose the input vector x = [v11, v

2
1]

T with v11 = 2 and v21 = 3, the second (weighted
sum) layer computes the values v12 = v11 · 2 + v21 · 5 = 20, and v22 = v11 · −4 + v21 · 1 = −7. Then,
v12 and v22 pass through the activation function ReLu, resulting in v13 = 20 and v23 = 0. Finally,
the output is computed as v14 = v13 · 2 + v23 · −1 = 40.

The crucial characteristic that enables DNNs to solve the large variety of problems we briefly
mentioned before is that the parameters θ of the function can be learned. Although there are
several approaches to obtain the best values, such as the evolutionary method we elaborate
in the following chapters, the standard and most common is Gradient Descent (GD) [Ruder,
2016]. To provide intuition on how GD works, we first define a loss function (L) as a way to
measure the distance between the output of the network y and the desired output ŷ. A crucial
requirement for the loss function is differentiability over the parameters of the network. For
example, a valid loss function is Mean Squared Error(MSE):

L(fθ(x), ŷ) =
1

2

n∑
i=1

(yi − ŷi)2 (2.2)

GD consists in iteratively updating the parameters θ by stepping in the opposite direction of
the gradient to minimize the function L. More formally, the k-th step of the algorithm is:

θk+1 = θk − α∇θkL(fθ(x), ŷ) (2.3)

Fig. 2.3 graphically shows the general idea. There are different variants and improvements over
GD, for example, the momentum [Sutton and Barto, 2018], Adam [Kingma and Ba, 2014] and
more, that share the general structure and the main intuition. It is important to remark, and
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Figure 2.2: An illustrative example of a neural network with two inputs, two hidden layers, and one
output. The biases b(l) are not indicated in this simplified version.

this is particularly relevant in our work, that the loss function is not necessarily something we
aim to minimize but, in some cases, is the objective we want to maximize. In this last case, the
procedure is called gradient ascent, and the loss function is denoted with the more general name
of objective function.

Deep Learning is commonly subdivided into three macro-families of approaches: supervised
learning, unsupervised learning, and reinforcement learning. While diving too deeply into these
concepts is out of scope for this thesis, it is important to remark on the main differences between
these approaches and explain why we focus on the latter.

• supervised learning: the key characteristic is the use of labeled datasets. Intuitively, the
learning algorithm adjusts the weights of the DNN to learn how to predict the correct
output label given an input. The idea is that the generated models can generalize to
unseen and new data, learning the correct pattern from the input dataset [Hornik et al.,
1989].

• unsupervised learning: the objective is to analyze and cluster unlabeled data, finding
patterns and subdividing data into different groups. Although an entire branch of DL
works in this exciting direction, the objective of these approaches is different from the
focus of this thesis. We refer interested readers to more specific papers [Berry et al., 2019].

Supervised learning approaches are widely adopted; they have shown excellent performance
and are considered state of the art in image recognition [Jiang et al., 2022], sentiment analysis
[Birjali et al., 2021], music generation [Briot and Pachet, 2020], and many more. However
supervised learning suffers from a serious limitation intrinsic to the method, it requires a dataset.
Obtaining a dataset can be challenging, sometimes even impossible, and obtaining fair data, not
biased by human choices, is an additional challenge. To face all these problems, the emerging
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Figure 2.3: High-leve overview of the gradient descent approach. The parameters of the DNN are moved
towards the local minimum to minimize the loss function.

field of Deep Reinforcement Learning (DRL) is gaining popularity. Driven by the successes
demonstrated in an impressive variety of contexts, ranging from game-playing [Mnih et al.,
2013], robotics [Marchesini and Farinelli, 2020] and being applied in many more specific fields
such as medical problems [Zhu et al., 2020; Attanasio et al., 2020], industrial applications [Hu
et al., 2020] and financial operations control [Meng and Khushi, 2019].

Deep and Classical Reinforcement learning First, we must clarify that reinforcement
learning is not necessarily deep (i.e., based on DNNs). Indeed, one of the most popular RL
approaches is Q-Learning, which is based on tables (notice that other table-based RL approaches
exist, such as SARSA). The objective of Q-Learning is to update a table (usually called q-table),
randomly initialized [Sutton and Barto, 2018], with values that represent the desirability value
of action a in a given state s. This value reflects the cumulative long-term reward the agent
expected to obtain by choosing the action a and following the optimal policy. Tab. 2.1 shows a
toy example to provide the intuition of a q-table structure.

The q-learning algorithm relies on the Bellman Equation to update the values inside the
table. Here, we provide only an intuition, referring the interested readers to Sutton and Barto
[2018] for more details:

Q(s, a) = r(s, a) + γ ·max
a

Q(s′, a′) (2.4)

where ⟨s, a⟩ is the state-action pair we are updating (i.e., time t), and ⟨s′, a′⟩ is the state-action
pair of next time step (i.e., time t+ 1).
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Action 1 Action 2 Action 3 Action 4

State 1 10 7 3 -2

State 2 4 3 1 4

State 3 -12 -4 3 12

Table 2.1: An illustrative example of a q-table structure. For each state-action pair, the table stores a
scalar value representing the Value Q-reflects of the couple.

2.2 DEEP REINFORCEMENT LEARNING

Deep reinforcement learning [Sutton and Barto, 2018] is a unique paradigm and setting for
training DNNs. In DRL, an agent, is trained to learn a policy π, which maps each possible
environment state s (i.e., the current observation of the agent) to an action a. The policy can
have different interpretations among various learning algorithms. For example, in some cases,
π represents a probability distribution over the action space. In contrast, in others, it encodes
a function that estimates a desirability score over all the future actions from a state s. During
training, at each discrete time-step t ∈ 0, 1, 2..., a reward rt is presented to the agent, based on
the action at it performed at time-step t.

Fig. 2.4 shows an overview of the standard DRL loop. Different DRL training algorithms
leverage the reward differently to optimize the DNN-agent’s parameters during training. The
uniqueness of the DRL paradigm lies in the training process, which is aimed at generating a
DNN that computes a mapping π that maximizes the expected cumulative discounted reward
Rt = E

[∑
t γ

t · rt
]
. The discount factor, γ ∈

[
0, 1

]
, is a hyperparameter that controls the

influence that past decisions have on the total expected reward.
A natural way to encode a DRL task, which can be described as a sequential decision-making

problem, is through a Markov Decision Process (MDP). An MDP is a popular mathematical
framework, defined as a tuple of 4 elements ⟨S,A,R, T ⟩, where:

• S is the set of states for the environment.

• A is the set of actions the agent can perform.

• R is the reward function that maps the pair state-action to a real value. In some setups,
R is defined only on the current state; in others, the reward function also considers the
next state and actions.

• T is the transition model. In some cases, it can be deterministic, and in others, stochastic.
In the latter, T is the probability of reaching a successor state by selecting a specific action
in a given state.

Providing a taxonomy for the DRL algorithms can be complex, and sometimes different
views may emerge even from the most influential resources. Here we simplify this subdivision,
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Figure 2.4: The standard reinforcement learning training loop. An agent interacts with the environment,
collecting samples from the state and accumulating a reward signal.

accepting some simplifications to clarify the design choices we made in our work. In this the-
sis, we focus only on model-free approaches, where the transition model T is unknown to the
algorithm. However, another family of RL approaches, model-based, considers the transition
model in the training loop [Moerland et al., 2020]. Focusing on model-free approaches, we clas-
sify DRL training algorithms into three categories: value-based, policy-gradient, and actor-critic
[Amir et al., 2022].

VALUE BASED

Although q-learning has shown interesting results, using a table as a data structure presents
several limitations. Among others, the most relevant are certainly scalability and continuous
action spaces. For complex problems, the number of states, and consequently the size of the
table, grow exponentially and become intractable. Moreover, it is possible to store only a
finite number of states in a table, excluding all the tasks based on continuous observations. To
overcome all these problems, in Deep Q-Network (DQN), Mnih et al. [2013] propose the use of a
neural network as a function approximator for the q-table. The basic idea behind the algorithm
is the same as Q-Learning. However, a DNN can manage continuous input, and the network
size does not have to be proportional to the number of possible states, enhancing the scalability.
Listing 2.1 presents a näıve implementation of deep Q-network in python-like pseudocode.

DQN is often considered the first value-based approach for DRL. However, despite its enor-
mous success, it presents some limitations and has been improved in several ways. Among the
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most notable improvements and follow-up works, we mention Double DQN [Van Hasselt et al.,
2016], Dueling DQN [Wang et al., 2016] and Rainbow [Hessel et al., 2018]. However, even though
the state-of-the-art algorithms can successfully find an excellent approximation of the ideal value
function, as explained in the introduction of this section, the main objective of a DRL algorithm
is to find the best policy (i.e., the best strategy to solve a task). In the value-based world, the
policy π is trivially “follow the action with the highest value”, a simple approach that introduces
different limitations. In the next section, we discuss some of these limitations, introducing the
policy gradient class of algorithms as a possible solution.

# Function that implements the actual learning phase of the training ,

# we assume to have primitive functions for the execution of neural

# networks (e.g., predict and fit)

def update_network( memory_buffer ):

mini_batch = sample_from_buffer( memory_buffer )

for (state , action , next_state , reward) in mini_batch:

target = network_predict( state )

q_values = network_predict( next_state )

max_q = max( q_values )

# Actual implementation of the Bellman Equation

target[action] = reward + gamma * max_q

fit_network( state , target )

# Main function that implements the standard reinforcement learning loop

def main ():

# In this loop , we assume to have the initial state for the first iteration

while True:

action = select_action( state )

# ’interact_with_environment ’ is an ideal function that ,

# given an action compute the interaction with the environment

# returning the updated state and the reward

next_state , reward = interact_with_environment( action )

memory_buffer.append( state , action , next_state , reward )

update_network( memory_buffer )

state = next_state

# ’epsiode_done ’ is a flag that indicates terminal states

if epsiode_done: break

if __name__ == "__main__":

main()

Listing 2.1: A python-like implementation of the näıve DQN algorithm. The code follows the
structure of a gym-like setup [OpenAI, 2021] and is a simplified version of the complete code
presented in our repository [Corsi, 2022].

Limitations of value-based approaches Recalling the introduction of this section, the
objective of a DRL approach is to find a policy, i.e., a strategy to solve a given problem. Value-
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based approaches, in contrast, learn a value function that represents a sort of proxy for a model
of the environment. Although this can be useful for generalization to unseen environments
[Sutton and Barto, 2018], in general, this is out of scope. Fig. 2.5(a) shows a simple example of
this first problem. In this example, to reach the goal, the robot should go straights; it does not
need to learn the structure of the environment (smiles, stars, and suns). However, a value-based
approach would try to learn the value of all squares, which is clearly out of scope. The previous
one is an illustrative example; however, we can easily extend it to a navigation problem, where
an autonomous car tries to learn the city’s structure while only needing information about the
road.

(a) The Blind Robot (b) The Deterministic Dilemma

Figure 2.5: Two toy examples to show the limitations of a value-based approach and a deterministic policy.
(a) shows the classic example of the blind robot, where the solution does not require any information on
the environment; (b) shows a trivial problem on which a deterministic policy fails in finding a solution.

Another crucial problem is determinism at inference time. Assuming to have the optimal
value function for a robot that can rely only on local observations, the policy is to always choose
the action with the highest Value, and this leads to a deterministic policy, i.e., in the state
sk, the agent always selects the action ak. Fig. 2.5(b) depicts a trivial problem on which a
deterministic policy fails. From a local observation point of view, the two states, marked with
arrows A and B, are equivalent; this implies the agent always selects the same action, ending
in an infinite loop. To solve this last problem, the simplest solution is to have a probabilistic
policy, for example, p(right) = 0.8 and p(left) = 0.2, such that the agent has a high probability
of solving the problem given a sufficient number of steps.

POLICY GRADIENT

In this section, we answer the question: is it possible to learn the policy directly?. To achieve
this goal, we think of the neural network as an approximator for a probability function, such as:

fθ(x) ∼ pθ(action|state) (2.5)
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where x is the input vector of the neural network that represents the current observation (i.e.,
current state). Recalling the main objective of a DRL algorithm, i.e., maximizing the expected
reward (R) of a trajectory τ , following a policy π defined over the parameters θ. The objective
function to optimize can be formally written as follow:

J(πθ) = Eτ∼πθ
[R(τ)] (2.6)

the first intuition is to perform a gradient ascent process to maximize this objective function.
However, J(πθ) does not trivially respect the requirements for a suitable objective function
described in the previous section, given that R(τ) is not differentiable over the policy πθ (i.e.,
R(τ) is a scalar value that does not depends on the parameters θ of the DNN). To obtain a
differentiable function to maximize, we rely on the policy gradient theorem. In this thesis, we
provide a simplified derivation of the theorem, referring interested readers to the original paper
for details [Sutton et al., 1999]. The initial step is to apply the gradient for the gradient ascent
process:

∇J(πθ) = ∇Eτ∼πθ
[R(τ)] (2.7)

then, applying the definition of expectation, we obtain:

∇J(πθ) =

∫
τ
∇πθ(τ)R(τ) dτ (2.8)

notice that the previous step can be interpreted as the probability of performing the trajectory
multiplied by the corresponding reward. Before the next step, we introduce the log-derivative
trick [Achiam, 2018] for a generic function f(x), based on the the notion that ∇xlog(f(x)) =
1

f(x) · f
′(x):

∇f(x) = f(x) · ∇f(x)

f(x)
= f(x) · ∇log(f(x)) (2.9)

by applying the log-derivative trick to Eq. 2.8, we obtain:

∇J(πθ) =

∫
τ
πθ(τ)∇log(πθ(τ))R(τ) dτ (2.10)

Eq. 2.10 has two key features. First, we now have πθ in the objective function, and second, it
is possible to apply back the definition of expectation:

∇J(πθ) = Eτ∼πθ
[∇log(πθ(τ))R(τ)] (2.11)

before the final step, we analyze in detail the meaning of πθ(τ). Intuitively, this is the probability
of performing the trajectory τ following the policy π. However, we must also consider the
transition model T to obtain the probability of moving from one state to another given an
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action. Given st and at the state and action of the time-step t, we formally define π(τ) as
follows:

πθ(τ) = p(s0) ·
T∏
t=1

πθ(at|st)T (st+1|st, at) (2.12)

however, in Eq. 2.11, we have ∇θlog(πθ(τ)), by applying the logarithmic properties and the
derivative rules (e.g., d

dyf(x) = 0), we obtain the following equality:

∇θlog(πθ(τ)) = ∇θ

T∑
t=1

log(πθ(at|st)) (2.13)

finally, applying Eq. 2.13 to Eq. 2.11, we obtain the final version, which is differentiable on the
parameters of the DNN and is equivalent to the expectation of the reward following the policy:

∇J(πθ) = ∇θEτ∼πθ
[
T∑
t=1

log(πθ(at|st))R(τ)] (2.14)

Equation 2.14 is the result of the policy-gradient theorem. This groundbreaking mathemat-
ical derivation is a fundamental result for the DRL community and, consequently, one of the
foundations of this thesis. Crucially, Eq. 2.14 can be directly implemented as a key function for
a DRL algorithm, and the resulting approach is REINFORCE (or näıve policy-gradient) [Sutton
et al., 1999]. In Listing 2.2 we show the näıve implementation of REINFORCE; similarly to the
previously discussed case of DQN, this can be considered the first policy-gradient approach, and
likewise DQN, much effort has been developed to improve the performance of the algorithm.
Among the others, we mention baseline [Sutton and Barto, 2018], reward-to-go [Tamar et al.,
2016] and the A2C [Mnih et al., 2016] algorithm. Although all these improvements are cru-
cial, we focus on the latter to introduce the next section. The main intuition is to replace the
trajectory total reward R(τ) with the advantage of choosing a specific action a in the state s
with respect to the expected reward the agent obtains starting from s and following the current
policy (V (s)). Following, we show a more formal definition of advantage:

A(st, at) = rt+1 + γV (st+1)− V (st) (2.15)

ACTOR/CRITIC

Notice that, in a standard setup, the value function V (s) of Eq. 2.15 is not provided and, given
the model-free nature of the problem we are facing, is not obtainable in closed form. However,
we can approximate this function with an additional DNN. The training of a DNN to learn a
value can be encoded as a value-based DRL problem and solved with a standard algorithm (e.g.,
a derivation of DQN). This additional neural network that approximates V (s), is called critic,
while the original DNN that performs the policy update is called actor.
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# Function that implements the actual learning phase of the training ,

# we assume to have primitive functions for the execution of neural

# networks (e.g., predict and apply_gradient)

def update_network( memory_buffer ):

trajectory_reward = 0

trajectory_probability = 0

for (action_probability , reward) in memory_buffer:

trajectory_probability += math.log( action_probability )

trajectory_reward += reward

# Actual implementation of the policy -gradient theorem

objective_function = trajectory_probability * trajectory_reward

apply_gradient( objective_function )

# Main function that implements the standard reinforcement learning loop

def main ():

# In this loop , we assume to have the initial state for the first iteration

while True:

action , action_probability = select_action( state )

# ’interact_with_environment ’ is an ideal function that ,

# given an action compute the interaction with the environment

# returning the updated state and the reward

next_state , reward = interact_with_environment( action )

memory_buffer.append( state , action , action_probability ,

next_state , reward )

state = next_state

# ’epsiode_done ’ is a flag that indicates terminal states

if epsiode_done: break

#

update_network( memory_buffer )

# Remove all the elements from the buffer

memory_buffer.clear()

if __name__ == "__main__":

main()

Listing 2.2: A python-like implementation of REINFORCE. The code follows the structure of a
gym-like setup [OpenAI, 2021] and is a simplified version of the complete code presented in our
repository [Corsi, 2022].

Some might ask whether using the advantage compensates for an additional neural network
requirement. Other than the empirical results that show significant improvements in almost
every kind of problem [Mnih et al., 2016; Schulman et al., 2017; Haarnoja et al., 2018b,a], we
briefly introduce the differences between on-policy and off-policy to understand better why an
actor-critic architecture is useful. A crucial advantage of value-based approaches is that the value
of a state is independent of the policy; this allows updating the value function with any source
of data, regardless of how we collect them. This approach is called off-policy, which generally
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is more sample-efficient, limiting the wasting of previously collected data. In contrast, in an
on-policy setting (e.g., Eq. 2.14), the policy update rule refers to the trajectory reward R(τ),
which strictly depends on the policy that controls the actions selection. From a mathematical
perspective, the policy-gradient theorem can not be formally derived if the policy πθ of the
expectation is not the same as the πθ of the objective function J(πθ) (Eq. 2.6). The consequence
is that it is possible to update the policy only with data collected with the same policy. After
each gradient step, the policy is changed, losing all the data previously collected. A crucial
strength of actor-critic architectures is that the critic can be trained off-policy (increasing the
sample efficiency). At the same time, the actor maintains the advantages of an algorithm based
on the policy gradient theorem.

Proximal Policy Optimization The final step of our journey into deep reinforcement learn-
ing is to present a state-of-the-art algorithm: Proximal Policy Optimization (PPO) [Schulman
et al., 2017]. PPO is largely adopted for many problems and is widely considered the most
versatile and better-performing approach. To explain the main idea behind this algorithm, we
first briefly introduce another approach, considered its precursor: Trust Region Policy Opti-
mization (TRPO) [Schulman et al., 2015]. TRPO proposes a simple intuition: small changes
in the parameters of the DNN (θ) can lead to considerable variations in the policy, potentially
causing a tremendous decrease in the performance, hard to recover in the training loop (e.g.,
catastrophic forgetting [Goodfellow et al., 2013]). Consequently, instead of bounding the up-
dated to the parameters θ, TRPO tries to limit the policy changes at each gradient step, using
the KL-divergence. However, computing this value is computationally expensive, making the
entire process practically intractable for real-world problems.

Schulman et al. [2017] propose to approximate the KL-divergence by clipping the ratio be-
tween the policy at the current time step (the one that must be updated) and the policy in the
previous time step. More formally, the new objective function is in the following form:

J(πθ) = Eτ∼πθ
[L(s, a, θ, θk)] (2.16)

given the ratio r(θ) defined as:

r(θ) =
πθ(s|a)
πθk(s|a)

(2.17)

finally, the objective function of PPO is:

L(s, a, θ, θk) = min(r(θ)Aπθk (s, a),

{
(1 + ϵ)Aπθk (s, a), if Aπθk (s, a) is ≥ 0

(1− ϵ)Aπθk (s, a), if Aπθk (s, a) is < 0
(2.18)

where ϵ is the clip value (in the original paper Schulman et al. [2017] suggest a fixed value of
ϵ = 0.2).

25



CHAPTER 2. FOUNDATIONS AND CRITICAL ANALYSIS

2.3 SAFETY CRITICAL TASKS

In the previous sections, we only considered a single objective for the training, the reward
function. Historically, DRL has been studied and applied to benchmarking applications, such
as classical games (e.g., chess [Silver et al., 2017] or go [Silver et al., 2016]), video games (e.g.,
Atari [Mnih et al., 2013]), and synthetic challenging environments (e.g., MuJoCo [Todorov et al.,
2012], OpenAI Gym [Brockman et al., 2016]). Fig. 2.6 shows different examples of classical DRL
problems.

Figure 2.6: Examples of DRL classical problems, ranging from Atari to chess and go.

These problems are challenging and excellent case studies for developing more sophisticated
techniques and valuable benchmarks for evaluating novel algorithms. However, in these prob-
lems, there is only one objective to achieve, only a function to maximize. Taking as examples the
environments of Fig. 2.6, in the game of chess, winning the game is the only goal to reach, while
in the Atari games, the only objective is to maximize the score. Moreover, they are simulated
environments in which the consequences of wrong actions are not reflected in the real world.

In contrast, there is another class of problems where safety is a priority, sometimes even
more important than the primary objective, called safety-critical. To provide an intuition, we
can think about a plane full of passengers. If a critical failure is detected, it is trivially better to
land as fast as possible (safety requirement) instead of trying to reach the destination (primary
objective), exposing people to risk. We identify this family of problems as safety-critical tasks.
Robotics is a typical example; when we work with robots, there are two fundamental reasons
to focus on safety: (i) high-cost equipment must be considered, and (ii) human safety can be
involved. We identified three fundamental questions and challenges about safety-critical tasks:

• What are the safety-critical tasks? And, what are the additional challenges they present?
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• How to formally encode and solve them?

• Can we provide guarantees about the safety of the resulting policies?

In this section, we answer the first question, showing three different real-world problems we
faced in our studies, describing the robotic platforms, and explaining the crucial challenges.
The answers to the second and third questions constitute the main contribution of this thesis
and are the focus of, respectively, Part I and Part II of this manuscript.

NAVIGATION AND MAPLESS NAVIGATION

Robotic Navigation is the task of navigating a robot through an environment. The robot’s goal
is to reach a target destination while adhering to predefined restrictions, e.g., selecting as short a
path as possible, avoiding obstacles, or optimizing energy consumption. In recent years, robotic
navigation tasks have received much attention, among other reasons, for their extendibility to
autonomous vehicles [Pan et al., 2017]. Navigation is a classical robotic problem, and together
with manipulation, it is often considered one of the two fundamental branches of the robotic
research. For this reason, it has been extensively studied over the years, and different algorithmic
methods have been developed to solve it (e.g., planners and search-based approaches) [Temeltas
and Kayak, 2008].

However, there is a variant of the robotic navigation problem, called mapless navigation,
where the map of the surrounding environment is unknown, and the robot can rely only on
local observations (i.e., the robot’s sensors). This configuration presents a set of challenging
problems. First, the absence of the map prevents (or makes it difficult) the adoption of the
previously mentioned planning-based methods. Second, the limited information collected with
the local sensors makes the problem not fully observable, introducing additional challenges like
the noise of the sensors and the impracticability of the consequences of actions [Marchesini
and Farinelli, 2020]. Although this formulation may seem to be an unnecessary (and artificial)
complication, many real-world problems can be encoded as a mapless navigation problem, for
example:

• Exploration of mines and caves, where the environment is completely unknown, and the
map can not be obtained.

• Collision avoidance in the presence of dynamic obstacles (e.g., humans or other agents)
that can not be easily modeled.

• Underwater monitoring (or in a borderline case, space exploration), where a connection
with the main computation unit is not possible for physical limitations, and the agent
should be able to make autonomous decisions in unexpected situations.
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• Navigation in unstable contexts, where the structure of the environment change frequently,
and so the computation of the map is unnecessarily expensive (e.g., rooms in which ob-
stacles can be moved daily).

State-of-the-art mapless navigation solutions suggest training a DRL policy to control the
robot. Such DRL-based solutions have obtained outstanding results from a performance point
of view [Zhu et al., 2017; Bojarski et al., 2016]. Specifically, the recent work of Marzari et al.
[2022] has demonstrated how DRL-based agents can be applied to control an agent in a mapless
navigation setting by training a DNN with a simple architecture (e.g., small feed-forward neural
networks). Notice that a limited DNN’s size is also a crucial requirement for the onboard control
of the robot.

(a) Robotis TurtleBot3 (b) Robotis TurtleBot4

Figure 2.7: The two versions of the Robotis TurtleBot we used in our experiments, respectively TurtleBot3
and TurtleBot4 (in the two versions, standard and lite) Images from the official website.

Robotic Platform Throughout the thesis, we performed most of the navigation experiments
and analysis on the differential mobile robot TurtleBot [Nandkumar et al., 2021], Fig 2.7 shows
the two versions of the platform. TurtleBot is widely used in robotics research [Ruan et al., 2019;
Zamora et al., 2016]. In particular, this robotic platform comes with the actuators required for
moving and turning, a lidar sensor for detecting obstacles, and an RGB camera optionally.
More details (and technical specifications) about the robot are provided in Chapter 8, in which
we conduct a comprehensive analysis of the methodologies proposed in this thesis using this
platform as a case study.

Safety Challenges Mapless Navigation is a concrete example of the two characteristics that
make a task safety-critical: (i) expensive hardware and (ii) human safety involved. In this con-
text, collision avoidance is a requirement, at least as strong as the main objective of reaching the
target position, in some cases even more (e.g., costly platforms or heavy machines in crowded
areas). This concept is further stressed by the inherent constraints of the mapless setup. Some-
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times, the task is so complex that getting stuck in a loop without compromising safety can be
considered a good accomplishment.

MEDICAL APPLICATIONS

As we already introduced, the success of DRL-based systems has naturally led to their integration
as control policies in safety-critical tasks. Various papers have shown that DNNs can be highly
effective also when applied to medical contexts [Pore et al., 2021, 2022]. In this scenario, human
safety is trivially involved. We categorize the medical application into two macro areas:

• Surgical Assistance, where the robot helps the surgeon in the operations, replacing a human
assistant for some complementary tasks.

• Autonomous Operation, where the robot acts autonomously, without human intervention.

In our studies, we experimented with both setups. For the first, we studied the tissue re-
traction problem. A recurring sub-task occurs during a minimally invasive surgery that involves
manipulating deformable connective tissues to access the region of interest, such as a tumor.
For the second, we analyzed the colon exploration problem, which is typically performed with a
wireless capsule that navigates through the colon. In the most advanced systems, the capsule is
controlled by magnets attached to a robotic manipulator, and a low-level controller translates
the local navigation instructions into the commands for the manipulator. Consequently, from a
high-level perspective, this problem can also be viewed as a corner case for mapless Navigation.

(a) DaVinci Surgical System (DVSS) (b) Magnetic Capsule Endoscope

Figure 2.8: The two robotic platforms we studied for the medical applications, on the left the DVSS,
used for our experiments on tissue retraction; on the right, the system for the colonoscopy exploration
with a magnetic capsule endoscope presented in the work of Slawinski et al. [2018].

29



CHAPTER 2. FOUNDATIONS AND CRITICAL ANALYSIS

Robotic Platform Our case studies consider two different platforms. The DaVinci Surgical
System (DVSS) consists of several instruments for tissue retraction tasks. DVSS comprises
three robotic arms called patient side manipulator equipped with articulated minimally invasive
surgery instruments [Attanasio et al., 2020; Pore et al., 2021]. For the colonoscopy problem, we
refer to the work of Pore et al. [2022] for details; however, from a high-level perspective, the
system is composed of a robotic arm that controls a wireless capsule exploiting a magnet-based
system. Fig 2.8 shows two pictures of the presented systems.

Safety Challenges Medical applications are probably one of the most important examples
of safety-critical tasks. In these contexts, DRL controllers operate directly on the human and
not only with the human. Moreover, humans often cannot react to any misbehavior, making
the task even more dangerous. In such conditions, it is clear that the priority is to preserve the
patient’s health, eventually even failing to complete the task. From a practical point of view,
in the tissue retraction case, an example of a safety requirement is to always operate inside a
safe working space (in Fig. 2.9 this area is marked with a blue cylinder). In the colonoscopy
case, the crucial requirement is collision avoidance with the walls, which can cause injuries to
the patient.

Figure 2.9: example of a safety requirement for the tissue retraction problem, the robot must operate
inside a specific workspace to avoid collision with the patient. The blue cylinder marks the safe area.

AQUATIC ENVIRONMENT

The last problem we consider in this analysis can also be seen as an advanced and more chal-
lenging version of the mapless navigation problem. The crucial difference that makes this task
interesting is the general instability of the environment. The waves, for example, are an unpre-
dictable external agent that significantly increases the system’s complexity. Another challenge
is the unpredictability of the actions’ outcome. The consequences of an action depend not only
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on the agent’s decisions but also on external elements that are difficult to model (e.g., surface
stream, water flow, water density, and, more in general, fluid physics).

Figure 2.10: The aquatic drones used in our experiments. The drone has been developed as part of the
INTCATCH 2020 European project.

Robotic Platform In our work we consider the INTCATCH drone (Fig. 2.10) which is a a
differential drive platform. It is based on a hull that is equipped with two in-water propellers.
The drone can be deployed in shallow water, with a max velocity of 3m/s. The onboard sensors
(e.g., GPS, compass) provide the localization and orientation information, while a lidar collects
the distances between the boat and obstacles.

Safety Challenges Generally, the challenges are shared with the standard navigation tasks.
However, the requirements are more strict. For example, a collision in an aquatic environment
leads to more severe damage to the robot (e.g., a water leak caused by a collision can fatally
damage the onboard electronics). Navigating in an aquatic environment is an additional example
where mapless navigation is the best way to encode the problem. Not only because the map
cannot be easily obtained but also because the decision should be taken based on current and
local observation (i.e., it can be hard to plan a complete sequence of actions in such a dynamic
context).

2.4 UNITY SIMULATION ENGINE

To perform the training of our robots, we rely on Unity3D, a popular engine originally designed
for game development that has recently been adopted for robotics simulation [Pore et al., 2021;
Marchesini et al., 2021a]. In particular, the built-in physics engine, the powerful 3D rendering
algorithm, and the time control system (which allows to speed up the simulation by more than
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10 times), have made Unity3D a very powerful tool in these contexts [Juliani et al., 2018]. The
extreme versatility of this software allows us to adopt it for all the simulations we needed for
our experiments. Crucially, the simulation has been demonstrated to be realistic enough to
allow the portability of the trained DNNs to the real-world robot. We have shown this key
characteristic in our previous works [Pore et al., 2021; Marchesini et al., 2021a; Corsi et al.,
2021; Marchesini et al., 2021b]. Moreover, in Part III of this thesis, we show a complete case
study of the approaches presented in this thesis. Moreover, the last versions of Unity provide
a complete pipeline and additional tools to extend the compatibility of the systems with the
Robot Operating System (ROS2) to guarantee a simplified simulation-to-real transfer of the
trained models. Finally, Fig. 2.11 shows some examples of our Unity environments, presenting
one screenshot for each of the safety-critical tasks we presented in this section (i.e., mapless
navigation, tissue retraction, and aquatic environment).

(a) Mapless Navigation (b) Tissue Retraction (c) Aquatic Simulation

Figure 2.11: Three examples of the simulations we developed for our robotic experiments. All the
simulations have been developed with the Unity3D engine, showing excellent performance with respect
to other state-of-the-art simulation engines (e.g., Gazebo) [Marchesini, 2022].
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Chapter 3

PRELIMINARIES

This chapter is intended as an introduction to the Part I of the thesis, where we will present
different methods to improve the reliability (and safety) of the policies directly inside the training
loop. In particular, we present a novel approach that exploits the lagrangian duality to extend
the concept of constrained optimization to a DRL context, showing how it is possible to optimize
the policy respecting a given set of requirements. In detail, in Chap. 4 we introduce a novel
approach for the definition of such requirements based on the formal language Scenario Based
Programming (SBP). In the next sections, we introduce the foundational concepts to understand
the main algorithm we present in the first part of this dissertation: Scenario Based Lagrangian
PPO. Moreover, we present a critical analysis of the state-of-the-art algorithm for solving a
constrained DRL problem, highlighting why we chose to focus on the Lagrangian family of
approaches.

3.1 CONSTRAINED OPTIMIZATION

The mathematical problem of constrained optimization has been widely studied for centuries.
In this section, we provide only a high-level intuition about it, introducing only the fundamental
concepts necessary to understand the algorithms covered in this thesis. To further investigate
these topics, we refer interested readers to the work of Bertsekas [2014]. The standard form for
a continuous optimization problem, defined over the vector variables x⃗ is:

min
x⃗

f(x⃗)

s.t. g(x⃗) = c
(3.1)

to solve this problem, the key observation is that the minimum (or the maximum) point of f ,
subject to g(x⃗) = c, always corresponds with a contour line of f , tangent to the curve g(x⃗) = c.
Notice that, in the tangent point between two functions, the two gradient vectors evaluated on

35



CHAPTER 3. PRELIMINARIES

this point are parallel, and there are no more specific requirements on their magnitude [Bertsekas,
2014]. By calling this magnitude λ (i.e., the lagrangian multiplier), we can formally write this
tangency condition in the following form:

∇f(x⃗) = λ∇g(x⃗) (3.2)

finally, combining Eq. 3.2 with the original constraint g(x⃗) = c, we obtain a system with the
same number of variables and equations, which solution returns the optimal point. Following, we
provide a numerical example to better understand the method. Suppose an objective function
to minimize f(x, y) = 2x+ y2 under the constraint g(x, y) = x+ y = 3, the system of equations
to solve is: 

∇x(2x+ y2) = λ∇x(x+ y)

∇y(2x+ y2) = λ∇y(x+ y)

x+ y = 3

(3.3)

computing the partial derivative of the first equation, we obtain the following system of 3
equations and 3 variables: 

2 = λ · 1
2y = λ · 1
x+ y = 3

(3.4)

solving the system, we obtain that the minimum is 5 in (2, 1). In the 1700’s Joseph Louis
Lagrange proposes a unique function that expresses all these conditions in only one equation,
called the lagrangian function:

L(x⃗, λ) = f(x⃗) + λ(g(x⃗)− c) (3.5)

the solution to the constrained optimization problem is the same as finding the stationary
point of L(x⃗, λ). Notice that the lagrangian function can be extended to the case of multiple
constraints, adding a multiplier λ for each constraint. The general form for multiple constraints
results as follows:

L(x⃗, λ⃗) = f(x⃗) +

n∑
i=0

λi(gi(x⃗)− ci) (3.6)

where n is the number of constraints. So far, we have analyzed the case with only equality
constraints. This is a strong limitation, especially in the case of DRL, where the numerical
optimization process intrinsically does not allow focus on such a strict requirement. We now
focus on another class of optimization problems, which includes inequalities constraints, in the
following form:

min
x⃗

f(x⃗)

s.t. g(x⃗) > c
(3.7)
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given the nature of DRL, to obtain a problem that we can address via a numerical method (e.g.,
gradient descent), the ideal solution is to relax this constrained optimization problem into an
unconstrained one in the following form:

min
x⃗

f(x⃗) + P (k) (3.8)

where k = g(x⃗) − c encodes the constraint and P is an indicator function that approaches ∞
if the constraint is violated (i.e., to minimize the global function, the respect of the constraints
must be prioritized). The exact solution involves the use of a step function (Fig. 3.1a). However,
this kind of function is discontinuous(and so not differentiable), and thus it can not be optimized
with a numerical method (e.g., gradient descent).

(a) Step Function (b) Family of Straight Lines

Figure 3.1: Comparison between the step-function and the family of straight lines for the lagrangian
relaxation.

Ideally, a differentiable linear function should be used. However, representing a step function
with only one line is not possible; a popular solution is to use a family of straight lines (Fig. 3.1b)
in the following form:

P (k) = max
u≥0

k · u (3.9)

notice that if k is negative (i.e., the constraint is respected), the support variable u is reduced to
zero; otherwise (i.e., the constraint is violated), u grows to infinity. Finally, combining Eq. 3.8
and Eq. 3.9 we obtain the following unconstrained relaxation of the optimization problem:

min
x⃗

max
u≥0

f(x⃗) + u · (g(x⃗)− c) (3.10)

Notice that the objective function has a similar structure as the lagrangian function; for this
reason, this method is often called lagrangian relaxation and the support variable u indicated
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with λ. In conclusion, the constrained optimization problem of Eq. 3.7 can be relaxed to obtain
the following unconstrained problem:

min
x⃗

max
λ⃗≥0

L(x⃗, λ⃗) (3.11)

3.2 EVOLUTIONARY ALGORITHMS

In this section, we introduce the general idea behind the Evolutionary Algorithms (EA) as
an alternative black-box optimization for a deep neural network (DNN) that shows promising
results when applied in a constrained DRL setting, especially in combination with a standard
gradient-based optimization process. An EA, and in particular a Genetic Algorithms (GA),
is characterized by three main operators [Fogel, 2006]: (i) generation; (ii) alteration; and (iii)
selection. The main loop is depicted in Fig. 3.2 while python-like pseudocode is reported in
Listing 3.1

# Function that implements the genetic algorithm , we assume to have the

# following functions for the support operations , that implements

# the functions described in this chapter:

# -> generate_random_population

# -> evaluation

# -> crossover

# -> mutation

def genetic_step( population ):

# Evaluation Step

score = [ evaluate(individual) for individual in population]

# Selection Step

best_p1 , best_p2 = evaluation( population , score )

# Crossover

merged_model = crossover( best_p1 , best_p2 )

# Mutation

new_population = mutation( merged_model )

# Main DRL training loop ,

def main_loop ():

# Generation of the initial random population

population = generate_random_population ()

# Iterate the genetic step until convergence

while not converged( best_model ):

best_model , population = genetic_step( population )

return best_model

Listing 3.1: A python-like implementation of the standard loop of a Genetic Algorithm.

In detail, a GA evolves a population of N individuals, each one represented by the network
vector parameter θ (genome). Each θi (i ∈ [0, .., N − 1]) is evaluated with respect to some
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requirements to produce a fitness F (θi), used by the selection operator to choose the best
genome. The best-performing models can be merged together and, with an additional mutation
step, used to generate a new population of individuals. The process iterates until convergence,
i.e., there are no significant behavioral differences between successive generations or when a
model matches the desired requirements.

Figure 3.2: The standard loop for a Genetic Algorithm.

Genetic Soft Update An EA is a black-box optimization characterized by generation, per-
turbation (mutation), and selection operators [Fogel, 1995], which can be used to augment
exploration [Khadka and Tumer, 2018]. EAs typically evolve a population of p ∈ N individuals
(genomes), represented by parameters (weights) θi (i ∈ {1, . . . , p}). The individuals are evalu-
ated to produce a fitness score used by the selection operator to choose the best genome. Mu-
tating a policy with simple Gaussian noise N , however, can lead to disruptive changes [Lehman
et al., 2018] that can be naively addressed using zero-mean and low standard deviation [Mart́ın
and Lope, 2009]. Otherwise, if we define a genome as a DNN parameterized by θ that represents
a function fθ : Dx → Dy (input x ∈ Dx ⊆ Rn and output y ∈ Dy ⊆ Rm, with input/output
size n, m), and a vector of states s, we can express the average divergence of the outputs y as
a result of a perturbation δ as:

d(fθ, δ) =
∥fθ(s)− fθ+δ(s)∥2

|s|
(3.12)

where fθ(s) are the forward propagation of the states through the DNN. A more flexible way
to avoid disruptive mutations assumes using a differentiable DNN to approximate d with gra-
dient information [Lehman et al., 2018]. In detail, it considers the following first-order Taylor
expansion to model an output yj ∈ y (j ∈ {0, . . . , |y|}) as a function of perturbations δ over the
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states s:

yj(fθ, δ) = fθ(s)j + δ∇θfθ(s)j (3.13)

In later sections, we discuss how our SM computes safety-informed perturbations, specializing in
the naive gradient-informed mutations based on Eq. 3.13, to foster safety-oriented exploration.

3.3 CONSTRAINED MARKOV DECISION PROCESS

In the previous section, we introduced the fundamental concept of optimization with inequali-
ties constraints. However, in the context of numerical policy optimization for DRL, a specific
encoding for the problem is required. A standard formalization, proposed in a wide variety of
state-of-the-art works, and considered as a standard in the community [Ray et al., 2019; Liu
et al., 2020; Achiam et al., 2017; Corsi et al., 2022; Marchesini et al., 2021b, 2020], is through a
Constrained Markov Decision Process (CMDP). The idea is to complement the standard reward
function of the DRL process with an additional function (or more than one) called cost func-
tion. While the optimization process aims at maximizing the reward signal, the cost function is
constrained to stay below a given threshold. Through this formulation, it is possible to encode a
large variety of requirements. In Chap. 4, for example, we show how it is possible to exploit this
method to inject prior knowledge, and in Chap. 9 we introduce some ideas on how to exploit this
method for future research directions. Crucially, the cost function is not necessarily required
to be minimized toward zero, exploiting the threshold, it is possible to guarantee safety with-
out compromising the expressiveness and the generalization power of the deep neural networks.
Following a formal definition for CMDP.

Formalization A CMDP [Altman, 1998] is a Markov Decision Process (MDP) with an ad-
ditional set of constraints C which consists of Ci : S × A → R (i ∈ {1, . . . ,m}) cost func-
tions (similar to the reward) with h ∈ Rm thresholds for the constraints. The Ci-return
is thus defined as JCi(π) := Eτ∼π[

∑∞
t=0 γ

tCi(st, at)], where τ = (s0, a0, . . . ) is a trajectory,
π = {π(a|s) : s ∈ S, a ∈ A} denotes a policy in state space S and action space A, and γ ∈ (0, 1)
is the discount factor. The constraint-satisfying policies ΠC (i.e., feasible policies), and the
optimal policies π∗ are thus defined as:

ΠC := {π ∈ Π : JCi(π) ≤ hi, ∀i} π∗ = argmaxπ∈ΠC J(π). (3.14)

where Π are the stationary policies, J(π) := Eτ∼π[
∑∞

t=0 γ
tR(st, at)] is the expected discounted

return that we aim at maximizing in a standard MDP, and R : S×A → R is the reward function.
Without loss of generality, we consider the case of one cost function (as in recent constrained
DRL literature [Ray et al., 2019; Stooke et al., 2020; Liu et al., 2020]) and we will discuss later
how SOS could handle multiple cost functions.
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3.4 STATE OF THE ART APPROACHES TO CMDP

In this section, we discuss the most relevant approaches and algorithms to solve a CMDP
via deep reinforcement learning. Lagrangian-DRL methods (e.g., lagrangian-PPO [Ray et al.,
2019]) directly exploit the lagrangian relaxation of a constrained optimization problem into a
policy gradient DRL algorithm. In the next chapter, we dive into this family of approaches,
introducing our algorithm to face this challenging problem. However, some other methods exist;
in this section, we briefly introduce the intuition behind these methodologies, leaving interested
readers to the original papers for more details, derivations, and experimental results on different
standard benchmarking environments. Crucially, some of the following algorithms constitute
the baselines for the next chapters.

CONSTRAINED POLICY OPTIMIZATION (CPO)

Constrained Policy Optimization (CPO) is one of the first algorithms to provide a methodology
to enforce a set of constraints into the training loop [Achiam et al., 2017]. The key idea behind
CPO is to use a trust region optimization method to simultaneously optimize the policy while
enforcing a set of constraints. The concept of trust region has been introduced in TRPO (trust
region policy optimization) by Schulman et al. [2015]; here the key idea was to update the policy
without drastically changing the behavior of its most recent iteration, enforcing a limit in the
KL-divergence between a policy at time t and the updated policy at time t+ 1. In addition to
this requirement, CPO additionally requires the policy to meet the constraints at each iteration,
limiting the trust region for the policy search in a feasible area for the constraints. More formally:

πk+1 = argmax
π∈Πθ

J(π)

s.t. Jc(π) ≤ d

s.t. D(π, πk) ≤ δ

(3.15)

where Πθ is the space of the possible policies, J(π) is the objective function for the reward, Jc(π)
the objective function for the cost with the corresponding limit d, and D(π, πk) a distance metric
between two policies, (typically the KL-divergence). Although CPO provides strong theoretical
guarantees of convergence to an optimal and safe policy (we refer to the original paper for the
proof [Achiam et al., 2017]), in practice it requires a series of relaxations to solve the trust region
optimization problem. These approximations required for the actual implementation, however,
lead to poor performance on complex tasks. This result is highlighted in a follow-up paper from
the same authors [Ray et al., 2019], where they empirically show that the lagrangian approaches
perform better than CPO on a set of complex locomotion benchmarks and it is further validated
in a series of more recent papers [He et al., 2023; Marchesini et al., 2021b; Liu et al., 2020].
In conclusion, recent developments in the field have revealed that CPO is no longer the best
option for solving a CMDP; however, it is still considered a fundamental baseline and a potential
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base for further improvement and extension (e.g., projection-based CPO [Yang et al., 2020] and
RCPO [Tessler et al., 2019]).

INTERIOR POINT POLICY OPTIMIZATION (IPO)

To overcome some of the limitations of CPO, and in particular the implementation complexity
and the required approximation, Interior Point Policy Optimization (IPO) [Liu et al., 2020]
proposes a first-order optimization method based on the concept of logarithmic barrier function.
The key idea is to add a penalty to the objective function of PPO to push the policy towards a
safer region. Recalling the notation from the previous section, we call J(π) the objective function
for the reward, Jc(π) the objective function for the cost, and d the limit for the cumulative cost.
The objective function for IPO becomes:

J(πθ) = Eτ∼πθ
[R(τ)]− I(C(τ)) (3.16)

Ideally, I is a penalty that should be modeled as an indicator function in the following form:

I(Jc(π)− d) =

{
0 Jc(π) ≤ d

−∞ Jc(π) > d
(3.17)

broadly speaking, Eq.3.17 means that if the constraint is satisfied, the problem translates into
an unconstrained optimization problem, focusing only on the reward, while, if the constraint is
violated, adjusting the constraint becomes a priority for the optimization algorithm (i.e., the
penalty is −∞). However, an indicator function such as Eq.3.17 is not differentiable, therefore,
to be optimized with a gradient-based approach, the problem should be relaxed with an approx-
imation of I; in IPO, the authors propose the use of a logarithmic barrier function in the form
of Φ(Jc(π) − d) = −log(Jc(π)−d)

t , where t is a hyperparameter for the optimization. Although
IPO shows promising results in some environments, it suffers from different limitations. For
example, the impact of the parameter t is opaque and requires a binary search to be tuned;
more crucially, the binary nature of Eq.3.17 does not allow for finding a continuous value for the
penalty that balances the reward and the cost. This crucial limitation can be addressed with a
Lagrangian approach that, at the same time, maximizes the objective functions while searching
for the best possible penalty. For this reason, IPO is typically not considered a state-of-the-art
algorithm in the most recent work on CMDP; however, it provides an interesting baseline for
the reward-shaping family of algorithms.

REWARD CONSTRAINED POLICY OPTIMIZATION (RCPO)

As mentioned before, IPO provides an algorithm that exploits an efficient and elegant technique
to provide a penalty to the objective function without requiring solving an additional optimiza-
tion problem to find the best magnitude for a penalty (e.g., lagrangian reinforcement learning).
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In the same direction, Reward Constrained Policy Optimization (RCPO) [Tessler et al., 2019]
proposes to exploit an actor-critic architecture to directly learn a penalized reward function that
can be exploited by any state-of-the-art policy-gradient algorithm (e.g., PPO or TD3). The key
idea is to enrich the reward function with a weighted penalty based on the cost, more formally:

rrcpo(λ, s, a) = r(s, a)− λ · c(s, a) (3.18)

where r(s, a) is the reward and c(s, a) is the cost function. Notice that, in this formulation, the
weight value λ is similar to a lagrangian multiplier but, in contrast to a “complete” lagrangian
method, is not part of the optimization process. The crucial insight of RCPO is that it exploits
only one critic for the optimization to directly predict the advantage of the penalized reward
function, i.e., V π(λ, s) = V π

R − λ · V π
C . The policy network can be trained with any actor-

critic approach (we refer to Chap. 2 for more details on this class of algorithms), while the
λ parameter is updated inside the loop increasing its value when the constraint is violated.
Formally: λk+1 = λk + η · (C − d), where η is a scaling factor that can be viewed as a learning
rate, C is the cost of the episode and d the corresponding threshold.

SAFETY-ORIENTED SEARCH (SOS)

We finally introduce Safety-Oriented Search (SOS), an alternative approach that combines evo-
lutionary algorithms with a classical gradient-based DRL approach [Marchesini et al., 2021b].
The key intuition behind this algorithm is to bias the policy toward safer regions within an
evolutionary cost optimization performed concurrently with the standard gradient-based DRL
loop. SOS leverages the exploration benefits of Evolutionary Algorithms (EA) to design a novel
concept of safe mutations that use the visited unsafe states to explore safer behaviors. The be-
havior of the policies is then characterized by an additional selection step based on the evaluation
of a set of given properties that encodes some prior human knowledge or safety requirements.
Hence, driving the learning process toward safer regions of the policy space. In more detail, the
algorithm exploits the visited states, which are deemed unsafe according to the cost, to approx-
imate the per-weight sensitivity of the actions over such undesired situations. The sensitivity is
then used to compute safety-informed perturbations that locally bias the agent policy to explore
different actions in the proximity of the unsafe states (i.e., the exploration process).

DISCUSSION

In recent years, constrained optimization has gained considerable attention, and researchers
have dedicated significant effort toward developing more effective and efficient algorithms to
tackle this challenging problem. To this end, several baselines and benchmarks have been es-
tablished, and a range of algorithms and environments are continually being developed and
analyzed. Despite these efforts, it remains unclear which algorithm or method should be con-
sidered the best performing. For example, although Constrained Policy Optimization (CPO)
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has demonstrated strong theoretical guarantees, it requires a set of approximations that limit
its effectiveness, particularly when dealing with complex problems, such as those encountered
in robotic control contexts. Notably, in a follow-up paper Ray et al. [2019], the same authors
of CPO, acknowledge the limitations of their approach and show that “complete” Lagrangian
methods outperform CPO in a set of locomotion benchmarks. Genetic-based approaches offer
a promising alternative for solving Constrained Markov Decision Processes (CMDPs); however,
their black-box nature poses a significant challenge in terms of the learning process transparency
and the applicability of algorithms, such as Safe Optimization via Simulation (SOS). Moreover,
genetic-based approaches require additional effort to be implemented in conjunction with stan-
dard deep reinforcement learning techniques. Despite these challenges, recent work by the
authors of SOS [Marchesini et al., 2021b] shows that incorporating an evolutionary step within
the loop can yield significant benefits and warrants further investigation. Finally, while “naive”
reward-shaping approaches have been shown to be ineffective for complex tasks, more sophisti-
cated methods, such as Reward Constrained Policy Optimization (RCPO), have demonstrated
promising results. Nonetheless, recent benchmarking studies suggest that Lagrangian methods
provide better overall performance, particularly in robotics control problems [He et al., 2023;
Ray et al., 2019; Gronauer, 2022]. In Chap. 4, we provide a comparison between CPO, RCPO,
IPO, and the standard version of Lagrangian PPO, showing that the latter outperforms the oth-
ers in our robotics and locomotion benchmarks. Therefore, we focus on Lagrangian algorithms
in this thesis, although we recognize the importance of investigating other methodologies.
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CONSTRAINED REINFORCEMENT LEARNING

In the previous sections, we introduced the concept of safety-critical problems in Deep Reinforce-
ment Learning (DRL), where the learning community has been seeking to create DRL-based
controllers that simultaneously demonstrate high performance and high reliability ; i.e., are able
to perform their primary tasks while adhering to some prescribed properties, such as safety and
robustness. An emerging family of approaches for achieving these two apparently concurrent
goals, known as constrained DRL [Achiam et al., 2017], attempts to simultaneously optimize
two functions: the reward, which encodes the main objective of the task; and the cost, which
represents the safety constraints. In the previous chapter, we discussed some of the current
state-of-the-art algorithms including IPO [Liu et al., 2020], SOS [Marchesini et al., 2021b],
CPO [Achiam et al., 2017], and Lagrangian different approaches [Ray et al., 2019; Roy et al.,
2021]. Despite their success in some applications, all these methods generally suffer from signif-
icant setbacks: (i) there is no uniform and human-readable way of defining the required safety
constraints; (ii) it is unclear how to encode these constraints as a signal for the training algo-
rithm; and (iii) there is no clear method for balancing the numerical instability of the cost and
reward optimization during training, and thus there is a risk of producing sub-optimal policies
(i.e., over-conservative or unsafe). In the previous chapter, we presented a novel framework
to face this problem: Safety-Oriented Search (SOS) [Marchesini et al., 2021b]. Although this
approach shows promising empirical results, the genetic nature of the algorithm intrinsically
limits the explainability and fails to provide both convergence and safety guarantees. These are
strong limitations that become crucial in the context of safety-critical tasks.

In this chapter, we present a novel approach for addressing these challenges by enabling
users to encode constraints into the DRL training loop in a simple yet powerful way. Our
approach generates policies that strictly adhere to these user-defined constraints without com-
promising performance. We achieve this by extending and integrating two approaches: the
Lagrangian-PPO algorithm [Ray et al., 2019] for DRL training, and the scenario-based pro-
gramming framework (SBP) [Damm and Harel, 2001; Harel et al., 2012b] for the encoding of
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user-defined constraints. Scenario-based programming is a software engineering paradigm in-
tended to allow engineers to create a complex system in a way aligned with how humans perceive
that system. A scenario-based program is comprised of scenarios, each of which describes a single
desirable (or undesirable) behavior of the system at hand. These scenarios are then combined to
run simultaneously in order to produce cohesive system behavior. We show how such scenarios
can be used to directly incorporate subject-matter-expert (SME) knowledge into the training
process, thus forcing the resulting agent’s behavior to abide by various safety, efficiency, and
predictability requirements.

4.1 DESCRIBING THE REQUIREMENTS

In order to inject prior knowledge into the training loop, the first challenge is to find a method to
describe and encode the requirements, preferably in a human-friendly way, that is differentiable
and thus optimizable in the training loop. At the same time, as motivated in Chap 3, in a
DRL context, we should rely on the Constrained Markov Decision Process (CMDP) framework,
where an addition signal (i.e., the cost function) has to be minimized concurrently with the
maximization of the reward function. In this section, we first present three classes of constraints
before diving into the formalism of our choice: Scenario Based Programming (SBP).

• Network Level Constraints A possible approach to describe requirements in a DRL
context is through input-output relations. For example, following the formulation proposed
by Liu et al. [2019], originally designed to encode safety requirements, we obtain the
following encoding:

Θ : If x0 ∈ [a0, b0] ∧ ... ∧ xn ∈ [an, bn] ⇒ yj ∈ [c, d] (4.1)

where xk ∈ X, with k ∈ [0, n] (where n is the number of input) and yj is a generic output.
Although this approach is useful for the offline formal verification of safety properties1,
it presents a crucial limitation that prevents its application in an on-policy DRL loop:
it does not depend on the trajectory (τ) (remember that, in a DRL loop, a trajectory
τ is the sequence of state and action in a single episode: τ = s0, a0, s1, a1, ..., sn, an).
Crucially, this is true not only for properties in the form of Eq. 4.1 but also for all the
static formulations, i.e., the formulations that depend only on the policy and do not depend
on the actual behavior of the agent in the environment. To better explain why these kinds
of formulations for the cost function can not be optimized by an on-policy DRL algorithm,
we analyze the problem both from a theoretical and an intuitive point of view.

Recalling the derivation of the policy-gradient theorem presented in Chap. 2, the objective
function to maximize is J(πθ) = Eτ∼πθ

[R(τ)], and this is a foundational requirement for

1This topic is the focus of Part II of this dissertation.
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the policy gradient theorem. In the case of the cost for a CMDP, the objective function
to minimize becomes Jc(πθ) = Eτ∼πθ

[C(τ)]. First, it is trivial that the function C(τ)
depends on τ , and in Eq 4.1 the parameter τ does not appear because the violation of
the property depends only on the parameters of the policy (DNN). Second, expanding
Jc by applying the definition of expectation, and considering that the cost function does
not depend on τ (e.g., Eq 4.1), we obtain that Jc(πθ) = Eτ∼πθ

[K] where K is a constant
for the expectation, and then Jc(πθ) = C; finally, by applying the gradient, we obtain
that ∇θJc(πθ) = ∇θC = 0 which has clearly no meaning in this context. Even without
considering the theoretical reason, there is an intuitive explanation of why the cost function
must be trajectory-dependent. The intuitive idea behind the gradient optimization for a
policy is the following: if the trajectory is evaluated as good, push the policy in the right
direction to increase the probability of doing the same trajectory again, trivially, if the
cost function does not depend on τ , the trajectory, and thus the policy that generated
it, can not be evaluated. Notice that this discussion is relevant only when applied to a
gradient-based optimization method; in the previous chapter, for example, we presented
SOS, a framework based on a genetic approach that is not gradient-based, and thus the
cost function can be trajectory-independent.

• State Level Constraints An alternative approach, that is currently considered a stan-
dard in the literature [Achiam et al., 2017; Marchesini et al., 2020] is to use a cost function
based on the current state (i.e., C(s)). Typically C(s) is an indicator function that assumes
the value 1 if the state is undesired and 0 otherwise, summing up this value over the whole
trajectory (τ), it returns a value that represents the number of violations that the policy
generated executing τ . In contrast to the previous example, a cost function formulated in
this way respects the requirements of the policy gradient theorem and can be optimized
through gradient descent to train an agent. Although this approach is sound and shows
promising results in complex environments [Ray et al., 2019], its expressiveness is limited.
A cost function encoded through this state-dependent approach is particularly effective in
limiting the agent to reach dangerous states but can not control the complex behavior of
the agent (for example, state/action pairs or sequences), which is a key requirement for
our prior-knowledge injection purposes.

• Trajectory Level Constraints To overcome these limitations, in the following sections,
we propose a novel approach for the encoding of cost functions. From a high-level point of
view, the intuition is to use a Finite-State Machine (FSM) that encodes the properties and
runs in parallel to the real loop of the agent. The states of the FSM are not necessarily the
same states of the CMDP but can represent combinations of states, actions, and sequences
of them. The FSM execution does not influence the behavior of the agent in the training
loop, and thus it does not compromise the exploration phase. We then increase the cost
signal by a unit if the state of the FSM is a forbidden state. This is clearly trajectory-
dependent and, at the same time, allows the characterization of the behavior. Although
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an FSM can encode constraints with combinations of states and actions and can thus
characterize a complete desired or undesired behavior. However, combining together the
executions of different FSM can be hard, making it difficult to describe a sequence of desired
behaviors. In this direction, we propose to extend this concept to more sophisticated
languages, such as scenario-based programming (SBP), which we introduce in the next
sections as a fundamental component of our novel approach.

4.2 LAGRANGIAN REINFORCEMENT LEARNING

In this chapter, we present the idea behind a Lagrangian Reinforcement Learning algorithm, an
approach to solving a CMDP that exploits the theoretical concept of Lagrangian relaxation for
constrained optimization problems. Following the definition from Chap. 3, we define a CMDP
as follows:

ΠC := {π ∈ Π : JCi(π) ≤ hi, ∀i} π∗ = argmaxπ∈ΠC JR(π). (4.2)

changing the order of the elements we redefine the problem as a standard constrained optimiza-
tion problem (we consider the single constraint problem for simplicity, but the derivation can
be easily extended to a multiple constraints version):

max
π

JR(π)

s.t. JC(π) < h
(4.3)

solving this equation with a gradient-based (i.e., numerical) approach is hard and, for com-
plex cases, even not possible. For this reason, we exploit the concept of lagrangian relaxation,
following the definition from Chap. 3, to relax the problem to the following unconstrained one:

max
π

min
λ≥0

L(π, λ) (4.4)

finally, by the definition of lagrangian function, we obtain:

max
π

min
λ≥0

JR(π)− λ(JC(π)− h) (4.5)

To find a solution to this problem in different recent works, such as Roy et al. [2021], the
authors have proposed to iteratively take a gradient ascent step of the max min problem in the
variable π and a gradient descent one in λ. The first step is to take a gradient descent step on
the lagrangian multiplier λ (notice that the first part of Eq. 4.5 does not depend on the variable
λ and cancels out) by applying the definition of gradient, we formally obtain:

∇λL(π, λ) = h− JC(π) (4.6)

recalling that the update must respect the constraint λ ≥ 0, we obtain two possible cases: (i) if
the property is violated (i.e., JC(π) ≥ h), the value of h−JC(π) is positive, and then the gradient
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descent step increase the value of lambda; or (ii) if the property is respected (i.e., JC(π) < h),
the value of λ is decreased until reaching 0.

The second step is the maximization over the policy π, notice that both JC(π) and JR(π)
depend on the policy, while the term (λ · h) cancels out because it does not depend on the
variable π; more formally:

∇πL(π, λ) = ∇π(JR(π)− λJC(π)) (4.7)

The gradient ascent step maximizes the function JR(π)− λJC(π), by simultaniously increasing
the positive element JR(π) and decreasing the negative one JC(π). However, the magnitude
depends on the value of λ. Considering the gradient descent step on λ, if the property is
respected (i.e., the system respects the requirements) λ is reduced, and the gradient ascent step
focuses more on the maximization of the reward; in the opposite case when the property is
violated λ is increased, and the gradient ascent step focuses more on the minimization of the
cost. The borderline case is when λ = 0, which means that the cost is below the given threshold
h and the optimizer focuses exclusively on the reward maximization. Finally, for the gradient
ascent step, any existing unconstrained method can be applied. A state-of-the-art solution is
to exploit the Proximal Policy Optimization algorithm (PPO) [Schulman et al., 2017], which is
often referred to as Lagrangian-PPO in this version [Ray et al., 2019].

4.3 COMBINING FORMAL LANGUAGES AND LAGRANGIAN DRL

In the previous sections, we discussed the problem of defining the requirements and how we
can exploit the concept of constrained optimization and lagrangian relaxation in the contexts of
DRL. In this section, we show how we address both these problems, presenting a novel framework
that we refer to as SBP Lagrangian [Corsi et al., 2022]. Our approach exploits scenario-based
programming for the definition of the requirements, and an optimized version of the Lagrangian
PPO algorithm for the training.

SCENARIO BASED MODELING

Scenario-based programming (SBP) [Damm and Harel, 2001; Harel and Marelly, 2003] is a
paradigm designed to facilitate the development of reactive systems, by allowing engineers to
program a system in a way that is close to how it is perceived by humans, with a focus on
inter-object, system-wide behaviors. In SBP, a system is composed of scenarios, each describing
a single, desired, or undesired behavioral aspect of the system; and these scenarios are then
executed in unison as a cohesive system.

The execution of a scenario-based (SB) program is formalized as a discrete sequence of
events. At each time step, the scenarios synchronize with each other to determine the next
event to be triggered. Each scenario declares events that it requests and events that it blocks,
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corresponding to desirable and undesirable (forbidden) behaviors from its perspective; and also
events that it passively waits-for. After making these declarations, the scenarios are temporarily
suspended, and an event-selection mechanism triggers a single event that was requested by at
least one scenario and blocked by none. Scenarios that requested or waited for the triggered
event wake up, perform local actions, and then synchronize again; and the process is repeated
ad infinitum. The resulting execution thus complies with the requirements and constraints of
each of the individual scenarios [Harel and Marelly, 2003; Harel et al., 2012b]. For a formal
definition of SBP, see [Harel et al., 2012b].

WATER  LOW 
Add HOT 
Add COLD 
Add HOT 
Add COLD 
Add HOT 
Add COLD 
...

EVENT LOG
Wait For: 

WATER LOW
Request:
Add HOT

Request:
Add HOT

Request:
Add HOT

Wait For: 
WATER LOW

Request:
Add COLD

Request:
Add COLD

Request:
Add COLD

add hot 
water

add cold 
water

Wait For: 
Add HOT 
Blocked: 

Add COLD

Wait For: 
Add COLD 

Blocked 
Add HOT

stability

WATER LOW Add HOT

WATER LOW Add COLD

Add HOT

Add COLD

Add  HOT

Add  COLD
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Figure 4.1: The state transition graphs represent the scenarios of a scenario-based program for controlling
a water tank. The add hot water and add cold water scenarios wait in their initial state for a WATER LOW

event. Once WATER LOW is triggered, they each move to their next state, requesting Add Cold and Add

Hot events, respectively. The stability scenario waits in its initial state for a Add Hot event, while blocking
Add Cold events. Once an Add Hot event is triggered, the scenario transitions to its second state, where
it blocks Add Hot events while waiting for an Add Cold event. Once an Add Cold event is triggered, the
scenario transitions back to its initial state, in which it waits for an Add Hot event while blocking Add

Cold events.

Although SBP is implemented in many high-level languages, it is often convenient to think
of scenarios as transition systems, where each state corresponds to a synchronization point, and
each edge corresponds to an event that could be triggered. Fig. 4.1 uses that representation to
depict a simple SB program that controls the temperature and water level in a water tank (bor-
rowed from [Harel et al., 2012a]). The scenarios add hot water and add cold water repeatedly
wait for WATER LOW event, and then request three times the event Add HOT or Add COLD, respec-
tively. Since these six events may be triggered in any order by the event selection mechanism,
a new scenario stability is added to keep the water temperature stable, achieved by alternately
blocking Add HOT and Add COLD events. The resulting execution trace is shown in the event log.
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While a python-like implementation code of this program, with the scenarios add hot water, add
cold water and stability, appears in Listing 4.1. SBP is an attractive choice for the incorpora-
tion of domain-specific knowledge into a DRL agent training process, due to being formal, fully
executable, and support of incremental development [Gordon et al., 2012; Alexandron et al.,
2014]. Moreover, the language it uses enables domain-specific experts to directly express their
requirements specifications as an SB program.

def add_hot_water ():

while True:

yield {waitFor: BEvent("WATER_LOW")}

yield {request: BEvent("Add␣HOT")}

yield {request: BEvent("Add␣HOT")}

yield {request: BEvent("Add␣HOT")}

def add_cold_water ():

while True:

yield {waitFor: BEvent("WATER_LOW")}

yield {request: BEvent("Add␣COLD")}

yield {request: BEvent("Add␣COLD")}

yield {request: BEvent("Add␣COLD")}

def stability ():

while True:

yield {waitFor: BEvent("Add␣HOT"), block: BEvent("Add␣COLD")}

yield {waitFor: BEvent("Add␣COLD"), block: BEvent("Add␣HOT")}

Listing 4.1: The Python implementation of the three scenarios: add hot water, add cold water,
and stability. The code will run until it reaches a synchronization point, indicated by a yield
statement, where it will stop and declare events it waits for, requests, and blocks. Once an
event that the scenario requested or waited for is triggered, the run-time engine will resume the
scenario’s execution, and the code will run until its next synchronization point and repeat.

FROM RULES TO CONSTRAINED DRL

Even after defining constraints as an SB program, obtaining a differentiable function for the
training process is not straightforward. To this end, we propose to use the following binary
(indicator) function:

ck(st, a, st+1) = I(the tuple ⟨st, a, st+1⟩ is a blocked state in the SB program, by the kth rule)
(4.8)

Intuitively, summing the values of the different ck’s over the training episode yields the exact
number of violations to the respective kth rule during the full trajectory; those are the values we
aim to minimize; moreover, following the intuition of Roy et al. [2021], this value, if normalized
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over the number of steps, can be seen as a probability of having a violation. This value can be
treated as a cost function, and the corresponding objective function is defined as follows:

JCk
=

∑
N

c(si, ai, si+1)

for a trajectory of N steps. This value is dependent on the action policy a and is therefore
differentiable on the parameters θ of the policy through the policy gradient theorem.

State Space Expansion. In the previous sections, we motivated the adoption of a trajectory-
based encoding for properties as it effectively characterizes intricate behaviors and their combi-
nations. To achieve this objective, it is crucial to combine actions and states in a time-dependent
manner. For instance, if we seek to encode the behavior “never turn left four times consecu-
tively” for a robotic drone, we can easily implement it using a scenario-based property (SBP).
However, a naive encoding of the state may lead to a violation of the Markov properties of the
MDP, where the next state and reward are independent on previous actions and states given
the current state and action.

Considering the above example, assume that the robot is in state s0 after three left actions,
and we calculate the cost function using Eq. 4.8, which yields Cs0 = 0. In contrast, if the robot
is in the same state after four left actions, it obtains Cs0 = 1. Although this problem does
not always hinder the policy from achieving a good local maximum, such a setting does not
respect a key assumption to guarantee the convergence of the training [Sutton and Barto, 2018],
potentially leading to instability in the learning process. In a CDRL context, this issue becomes
evident for our actor-critic setup, where we may update the critic with Q(s0, left) = 0 in some
cases and Q(s0, left) = 1 in others, leading to brittle convergence properties for the Q-function.
To address this limitation, we propose enriching the state of the critic by incorporating the
internal state of the SBP, i.e., adding the current internal state of the Finite State Machine
(FSM) as an input for the network, formally expressed as:

Q(S∗, left) s.t. S∗ = ⟨S, Si⟩
here, S represents the standard state of the MDP, and Si represents the internal state of the FSM
or SBP. It is noteworthy that these modifications affect only the critic and can be eliminated
after the training loop. This feature is critical because it does not increase the space complexity
of the actor or policy network and does not require computing the scenarios during inference.

Optimized Lagrangian-PPO. In this chapter, we proposed to relax the Lagrangian con-
strained optimization problem into an unconstrained, min-max version thereof. Taking the
gradient of Equation 4.5, and some algebraic manipulation, we derive the following two simul-
taneous problems:

∇θL(π, λ) = ∇θ(JR(π)−
∑
K

λkJCk
(π)) ∀k, ∇λk

L(π, λ) = −(JCk
(π)− dk) (4.9)
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In closed form, the Lagrangian dual problem would produce exact results. However, when
applied using a numerical method like gradient descent, it has shown strong instability and the
proclivity to optimize only the cost, limiting the exploration and resulting in a poorly-performing
agent [Achiam et al., 2017]. To overcome these problems, we introduce three key optimizations
that proved crucial to obtaining the results we present in the next section.

1. Reward Multiplier : The standard update rule for the policy in a Lagrangian method is
given in Equation 4.9. However, as mentioned above, it often fails to maximize the reward.
To overcome this failure, we introduce a new parameter α, which we term reward multiplier,
such that α ≥

∑
K λk. This parameter is used as a multiplier for the reward objective:

∇θL(π, λ) = ∇θ(α · JR(π)−
∑
K

λkJCk
(π)) (4.10)

2. Lambda Bounds and Normalization: Theoretically, the only constraint on the Lagrangian
multipliers is that they are non-negative. However, when solving numerically, the value of
λk can increase quickly during the early stages of the training, causing the optimizer to
focus primarily on the cost functions (Eq. 4.9), potentially not pushing the policy towards
a high-performance reward-wise. To overcome this, we introduced dynamic constraints on
the multipliers (including the reward multiplier α), such that

∑
K λk + α = 1. In order

to also enforce the previously mentioned upper bound for α, we clipped the values of the
multipliers such that

∑
K λk ≤ 1

2 . Formally, we perform the following normalization over
all the multipliers:

∀k, λk =
λ̃k

2(
∑

K λ̃k)
α = 1−

∑
K

λk (4.11)

3. Algorithmic Implementation: The primary objective of the previously introduced opti-
mizations is to balance the learning between the reward and the constraints. To further
stabilize the training, we introduce additional, minor improvements to the algorithm: (i)
lambda initialization: we initialize all the Lagrangian multipliers with zero to guarantee
a focus on the reward optimization during the early stages of the training (consequently,
following Eq. 4.11, α = 1); (ii) lambda learning rate: to guarantee a smoother update of
the Lagrangian multipliers, we scale this parameter to 10% of the learning rate used for
the policy update; and (iii) delayed start: we enable the update of the multipliers only
when the success rate is above 60% during the last 100 episodes. Intuitively, this delays
the optimization of the cost functions until a minimum performance threshold is reached.

Additional Hyperparamters. In the preceding paragraph, we presented three algorithmic
implementations to enhance the stability of a standard Lagrangian-PPO algorithm. However,
these methods introduce the need for additional hyperparameters that are not always easy to
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tune. In our discussion on the Lambda Bounds and Normalization, we encoded the normalization
rule such that α ≥ 0.5, which yielded favorable results in our benchmarking setup. However, we
cannot exclude the possibility that in other benchmarking environments, this value may need
to be modified. To provide a more general formulation, we introduce an additional parameter,
denoted as minα, which satisfies: ∑

K

λkJCk(π)) ≤ minα

this parameter enables to balance the focus of the optimization between the reward and the
cost functions, however, it can be hard to tune and heavily depends on the scale of these
two signals. Another parameter is related to our proposed delayed start approach. In our
configuration, we start the training of the lagrangian multiplier only after a fixed period of
time (i.e., after the success rate reaches a value of 60%), however, this threshold is specifically
tuned to our benchmarks and can not be uniformly applied to all environments. To generalize
this formulation, we introduce an additional parameter called lambda-start (λs), which serves
as an indicator for when the value of the Lagrangian multiplier can be increased. Although our
experiments have shown that minα and λs are easy to tune, the introduction of these parameters
can be viewed as a limitation of our method. As a future direction, we plan to investigate how
to learn these values as parameters for the optimization process, in a manner similar to how the
Lagrangian multiplier (λ) is trained within the constrained reinforcement learning loop.

4.4 RESULTS

We performed training on a distributed cluster of HP EliteDesk machines, running at 3.00 GHz,
with 32 GB RAM. We collected data from more than 100 seeds for each algorithm, reporting the
mean and standard deviation for each learning curve, following the guidelines of Cédric et al.
[2019]. For training purposes, we built a realistic simulator based on the Unity3D engine [Juliani
et al., 2018], which we used for the comparison with the penalty-based approach; Our ablation
studies are based on Bullet Safety Gym [Gronauer, 2021].

SBP Lagrangian vs Penalty-Based To the best of our knowledge, this is the first work
that combines scenario-based programming into the training of a constrained deep reinforcement
learning system. However, to show our results, we proposed a comparison with the work of
Yerushalmi et al. [2022], the authors proposed integration between SBP and DRL using a reward-
shaping (or penalty-based) approach that penalizes the agent when rules are violated, with an
unconstrained optimization method. Our approach, based on constrained optimization, provides
many advantages compared to the mentioned work, which results in high-performing agents and
fewer rule violations. We provide an extensive comparison between the two approaches below.
The study has been performed on two rules, formalized through SBP, the definition of the rules
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is out of scope for this comparison, however, more details can be found in the original paper
[Corsi et al., 2022] and in Chap. 8.
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Figure 4.2: The graphs compare results achieved by our approach, denoted by LPPO, with those achieved
by [Yerushalmi et al., 2022], denoted by penalty and its value: fixed penalty of 0.1, 1.0, or 1.5: graph (a)
measures the success rates with all three scenario-based rules. The results of using the penalty approach
with a penalty value of 0.1 are practically the same as using our approach. However, using the penalty
approach with penalty values of 1.0 and 1.5 results in poor performance; graph (b) measures the frequency
of violations to the first rule. The results of using the penalty approach with penalty values of 0.1 and 1.0
are similar to ours. When using the penalty approach with a penalty value of 1.5, the violations diminish
completely. However, also the performance, as mentioned above; graph (c) measures the frequency of
violations to the second rule. The results of using the penalty approach with penalty values of 1.0 and
1.5 are practically the same as ours.

Fig. 4.2 compares the results of our approach and those of Yerushalmi et al. [2022]. As shown
in Fig. 4.2 using their approach, a low penalty value allows the agent to reach high-performance
reward-wise but fails to minimize the cost (e.g., the number of rule violations). In contrast, a
high penalty value reduces the agent’s rule violations but fails to reach adequate performance
in terms of the reward function. Our approach is shown here to reach similar performances as
the best from Yerushalmi et al. [2022], using a penalty value of 0.1, and reducing the agent’s
rule violations as the best of it, using a penalty value of 1.0 or 1.5. Our approach adopts a
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constraint-driven DRL framework that differentiates between optimizing the main reward and
minimizing the costs. This differentiation presents significant advantages, including:

• Allows the setting of constraint thresholds independently for each rule/property and the
handling of multiple such constraints in the same way, unlike methods such as [Yerushalmi
et al., 2022] that only allow a global minimization to zero of the total cost.

• Separates reward maximization from cost minimization, simplifying the reward engineering
task.

• Automatically balances the focus of the training, between the different cost elements and
the reward, by learning the values of the different multipliers for each cost factor.

• Introduces novel numerical optimizations to the training phase, resulting in a more stable
algorithm with a higher cumulative reward on a synthetic set of benchmarking environ-
ments).

Optimized Lagrangian To further validate our method, we provide a more intensive study
of our optimized implementation of the Lagrangian PPO. We perform our analysis on the stan-
dard benchmark Bullet Safety Gym [Gronauer, 2021]. Bullet Safety Gym is an open source suite
of different environments based on PyBullet and the most updated versions of Python, which
implements the standard environments from SafetyGym [Ray et al., 2019], adding more robots
and tasks. The crucial feature of the environments from Bullet Safety Gym is that they imple-
ment a Constrained Markov Decision Process (CMDP). In these environments, the objective is
to maximize the reward function and maintain a cost function below a given threshold. We refer
to the main paper from Ray et al. [2019] for more details. We selected a subset of environments
for our analysis: Ball Circle v0, Ball Reach v0 and Car Reach v0. A detailed description of
the environments can be found in the open source repository of Bullet Safety Gym [Gronauer,
2021]. Fig. 4.3 shows our results on the three environments, comparing cost and reward func-
tions obtained with (i) the standard PPO algorithm (PPO); (ii) a standard Lagrangian PPO
(Base-LPPO); and (iii) our optimized Lagrangian PPO (LPPO) described in this chapter.

Overall, these results show that our algorithm can get similar performance reward-wise as
PPO, and can get the cost below the required threshold in two out of three test cases. However,
in Fig. 4.3(a), on the Ball Circle v0 environment, PPO reaches significantly better reward-
wise performance than ours. Moreover, in Fig. 4.3(f), in the Car Reach v0 environment, our
algorithm fails to get the cost below the required threshold. We leave it for future work, to study
the impact of adding expert-knowledge rules with our optimizations, and if those will enable
obtaining good performance reward-wise and cost-wise, also in those cases, for the Ball Circle
v0 environment reward, shown in Fig. 4.3(a), and the Car Reach v0 environment cost, shown
in Fig. 4.3(f).
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In summarizing, Fig. 4.3 shows that, not surprisingly, the standard PPO reaches good per-
formance reward-wise but can not optimize the cost. A näıve implementation of the Lagrangian
PPO can minimize the cost function but struggles to obtain good performance reward-wise.
Our optimized approach (without SBP rules) is the only one that, at the same time, succeeds
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Figure 4.3: A comparison between the original PPO [Schulman et al., 2017] (PPO), a standard implemen-
tation of Lagrangian PPO [Ray et al., 2019] (Base-LPPO), and our optimized version of the Lagrangian
PPO (LPPO). The analysis is performed on the standard benchmark Bullet Safety Gym [Gronauer,
2021], and in particular on three environments of the suite (Ball Circle v0, Ball Reach v0 and Car Reach
v0 ).
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in reducing the cost under the given threshold in two out of three cases while reaching good
performance reward-wise. We are confident that we can define SBP rules that will help to reduce
those costs as well as further improve the reward.
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Figure 4.4: A comparison between our improved version of the LagrangianPPO and alternative ap-
proaches for a CMDP; the analysis is performed on the standard benchmark Safety Gymnasium [Yang,
2023]. The first row shows a comparison of four safe navigation problems (i.e., SafePointGoal1-
v0, SafeCarGoal1-v0, SafePointCircle1-v0, and SafeCarCircle1-v0 ); while the second row shows
the comparison on four locomotion benchmarks based on MuJoCo (i.e., SafetyHopperVelocity-v1,
SafetyHalfCheetahVelocity-v1, SafetyWalker2dVelocity-v1, and SafetyAntVelocity-v1 ).

Comparison with Non-Lagrangian Methods In the previous paragraph, we provided an
ablation study to show the superior performance of our improved version of Lagrangian PPO
against the näıve implementation presented by Ray et al. [2019]. In this paragraph, in contrast,
we compare our algorithm against a set of non-lagrangian baselines, including CPO, RCPO, and
IPO (we refer to Chap. 3 of this dissertation for a detailed description of these methodologies).
We perform the analysis exploiting a set of environments from SafetyGymnasium [Yang, 2023],
an open-source version of the standard SafetyGym that we already discussed in the previous
sections. In particular, we select six different robots and three tasks, obtaining a combination
of 8 benchmarking environments. In particular, we focus on two families of problems that
provide a good overview of the tasks presented in SafetyGymnasium. With SafePointGoal1,
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SafeCarGoal1, SafePointCircle1, and SafeCarCircle1 the objective of our analysis is to show
the performance on a complex task, even if the dynamic of the robot is simple to control;
in contrast, in SafetyHopperVelocity, SafetyHalfCheetahVelocity, SafetyWalker2dVelocity, and
SafetyAntVelocity the task is simpler (i.e., move as fast as possible respecting some constraints
on the velocity for the joints), while the dynamic of the robot is more complex and hard to
control.

The experimental outcomes are presented in Fig.4.4, where we report, for each algorithm,
the performance results after 1M of steps in the environment, averaged over five different seeds.
The choice of showing the results at convergence time follows our intuition presented in Sec.1.
For our training pipeline, the constrained DRL is followed by a verification process and the
objective of the first phase is, in fact, to provide the best possible model to the verification
engine. We are thus interested in the performance at convergence and not averaged over the
training. In Fig.4.4, the black dotted line denotes the cost threshold, while the red line highlights
the reward obtained with our proposed algorithm (i.e., Optimized Lagrangian PPO); on the x-
axis we report the reward, while on the y-axis the cumulative cost. From our perspective, the
most successful algorithm is the one that achieves the highest reward while remaining below
this given threshold. Our results reveal that, overall, our algorithm achieves better performance
over the baseline. In some cases (e.g., SafetyAntVelocity), our lagrangian algorithm obtains
lower performance reward-wise but is the only one that respects the cost constraints and, in a
safety-critical context, should be considered the best choice.

Related Work and Future Direction In this chapter, we showed the promising results of
our approach with a set of experiments on different benchmarking environments. However, our
method suffers from some limitations, that we plan to address as part of future directions. First,
it does not provide formal guarantees that the resulting policies are safe. Second, the scalability
of the method on multiple constraints needs to be investigated. We showed in this work that the
algorithm can easily handle one to three constraints, in addition to the main objective. We leave
to future work the analysis of performance when the number of constraints increases further.
Third, we noticed some performance deterioration after about 10,000 episodes. We believe that
the performance deterioration is related to the activation of the cost multipliers, especially as the
performance was recovered afterward. An alternative approach is presented in the recent work
of Roy et al. [2021], where the authors advocate an optimized version of Lagrangian-PPO. They
propose a different approach to balance the constraints and the return, based on the softmax
activation function and without imposing bounds on the values for the multipliers. Moreover,
their work focuses on game development, a different domain from our focus, which presents
very different challenges, e.g., safety and efficiency are not considered crucial requirements. In
addition, they do not encode constraints using a framework geared for this purpose, such as
SBP, and are thus not suitable for a direct comparison.

Moving forward, we plan to extend our work to complex environments including navigation
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in complex domains (e.g., air and water). Another key challenge for the future is to inject
rules aiming to encode behaviors in a cooperative (or competitive) multi-agent environment.
Finally, we plan to exploit the concept of rules and cost function to inject different kinds of
prior knowledge, including human demonstrations, e.g., moving towards an imitation learning
framework.
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Chapter 5

THE VERIFICATION PROBLEM

Throughout this thesis, we showed that Deep Neural Networks (DNNs) have become extremely
popular, achieving state-of-the-art results in a wide variety of fields; popular examples come
from computer vision [Simonyan and Zisserman, 2014], financial operations control [Meng and
Khushi, 2019] and games playing [Mnih et al., 2013]. In Chapter 2, we also highlighted that,
in recent years, Deep Reinforcement Learning (DRL) has also been applied in several safety-
critical domains, such as robotics [Marchesini and Farinelli, 2020] and healthcare [Pore et al.,
2022]. Unfortunately, despite the widespread success of DNNs, they have been shown to suffer
from various safety issues [Katz et al., 2017; Szegedy et al., 2013]. In the first part of this
dissertation, we focused on the training of the models, trying to inject a set of requirements
directly during the training process. We now face the problem from a different and more formal
perspective: verification and validation.

5.1 PROBLEM FORMALIZATION

A well-known issue that prevents the application of DNNs in safety-critical contexts is related
to the adversarial configurations, i.e., a small perturbation to the inputs, which can be either
intentional (e.g. malicious attacks) or the result of noise (e.g., robotic sensors), that may cause
DNNs to react in unexpected ways [Moosavi-Dezfooli et al., 2017]. These inherent weaknesses
are observed in almost every kind of neural network and indicate a need for techniques that can
supply formal guarantees regarding the safety of the DNN in question. Specifically, related to the
focus of this dissertation, these weaknesses have also been observed in DRL systems [Eliyahu
et al., 2021; Kazak et al., 2019; Amir et al., 2021], showing that even state-of-the-art DRL
models may err miserably in some specific corner cases. These particular input configurations
are challenging to detect through only an empirical testing phase and consequently ignored
by the standard metrics. This underly the limits of the traditional evaluation approaches and
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highlights the need for more formal methods. To mitigate such safety issues, the verification
community has recently developed a plethora of techniques and tools [Katz et al., 2017; Gehr
et al., 2018; Wang et al., 2018b; Lyu et al., 2020; Lomuscio and Maganti, 2017] for formally
verifying that a deep neural network (DNN) is provable safe before the deployment.

Formal verification (FV) of deep neural networks can be addressed in many ways. Typically,
a verification framework checks whether an input-output relation (i.e., safety property) respects
some given constraints [Liu et al., 2019]. Given a neural network functionNθ(x) (with parameters
θ) with an input domain Dx ⊆ Rki and output domain Dy ⊆ Rko , where ki is the number of
input nodes and ko the number of output nodes, solving the verification problem requires to
formally show that a property in the following form holds:

x ∈ X ⇒ y = Nθ(x) ∈ Y (5.1)

where, X ⊆ Dx and Y ⊆ Dy. The input set X can have different geometries, a common
representation is based on hyperrectangle, which corresponds to a multi-dimensional rectangle
with a defined center c ∈ Rki and r0 ∈ Rki :

Xh = {x : ∥x− c∥2 ≤ r0} ⊆ Dx (5.2)

More in general the input domain of a safety property is represented with polytopes, defined as
halfspace-polytopes in the following form:

Xp = Cx ≤ d (5.3)

where C ∈ Rk×ki , d ∈ Rk and k is the number of inequalities that define the polytope. Com-
monly, the desired output for an FV problem is a single counterexample, a specific input con-
figuration that violates the relation of Eq. 5.1, or a formal proof that this output does not
exist. However, there is an alternative version of the FV problem, that we do not discuss in
this thesis (we refer to the work of Casadio et al. [2022] for more details), that aims at verifying
the robustness of a network, i.e., the tolerance to adversarial input configuration that causes
a misclassification in the output [Goodfellow et al., 2015], in this last case, the objective of
the verification is to find the maximum disturbance around an input point (x0) that does not
change the output label (expressed as an ϵ-ball around x0). Starting from this general defini-
tion, we introduce from the literature two more specific formulations. It is possible to show
the equivalence between them, however, our objective is to remark that FV can be applied in
different contexts to reach different objectives. We exploit these two additional formulations of
the problem, respectively, in Chapter 6 and Chapter 7.

Minimization Formulation [Weng et al., 2018] This formulation reduces the FV into a
minimization problem. The key intuition is that a formal verification query in the standard form
proposed by Liu et al. [2019], and representable with the tuple ⟨Nθ,X ,Y⟩, can be translated in
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an equivalent form encoded with an alternative tuple ⟨N ′
θ,X⟩, where N ′

θ is a modified version of
Nθ that includes Y. The idea is to add an additional dummy layer to Nθ, that directly encodes
the property, in a way that the property holds only if all the output of N ′

θ is positive. The
formal verification problem can then be redefined as follows:

N ′
θ(x) ≥ 0 ∀ x ∈ X ⇒ min

x∈X
N ′

θ(x) ≥ 0 (5.4)

For example, suppose Nθ has two output nodes, y0 and y1 and the objective is to demonstrate
that y0 ∈ [4, 6]. We create a new DNN N ′

θ, equivalent to Nθ with add an additional two nodes
layer: yl = (y0 · 1− 4) + (y1 · 0) and yu = (y0 · −1 + 6) + (y1 · 0). The equivalent property holds
only if all the outputs of N ′

θ (i.e., yl and yu) are greater (or equal) than 0.

Satisfiability Formulation [Katz et al., 2017] To define the satisfiability formulation we
must re-define first the requirements for an FV problem. A DNN verification algorithm receives
as input: (i) a trained DNN N ; (ii) a precondition P on the DNN’s inputs, which limits their
possible assignments to inputs of interest; and (iii) a postcondition Q on N ’s output, which
usually encodes the negation of the behavior we would like N to exhibit on inputs that satisfy P .
The verification algorithm then searches for a concrete input x0 that satisfies P (x0)∧Q(N(x0)),
and returns one of the following outputs: (i) SAT, along with a concrete input x0 that satisfies
the given constraints; or (ii) UNSAT, indicating that no such x0 exists. When Q encodes the
negation of the required property, a SAT result indicates that the property is violated (and the
returned input x0 triggers a bug). In contrast, an UNSAT result indicates that the property holds.

5.2 LITERATURE REVIEW

In literature, and following the taxonomy proposed by Liu et al. [2019], verification approaches
are subdivided in two different categories: (i) optimization approaches, that use optimization
methods (e.g., linear programming [Bastani et al., 2016], mixed integer linear programming
[Lomuscio and Maganti, 2017; Tjeng et al., 2018] os SMT-solver [Katz et al., 2017]) to falsify an
assertion; and (ii) reachability approaches which, given the input domain for the property X ,
try to compute the corresponding output domain (or reachable set) [Wang et al., 2018b; Weng
et al., 2018].

REACHABILITY APPROACHES

In contrast to optimization approaches, a reachability framework does not directly return SAT or
UNSAT. Instead, it tries to compute the output reachable set, formally, given the neural network
function fθ(x) and the property input domain X , the reachability set is defined as:

Γ(X , fθ) := {y : y = fθ(x), ∀x ∈ X} (5.5)
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In this scenario, a property is violated if Γ(X , fθ) ⊈ Y. However, even state-of-the-art approaches
[Wang et al., 2018b; Weng et al., 2018] struggle to compute the exact reachable set, succeeding
only in finding an overestimation of the real set Γ̃(X , fθ). Research, in recent years, has thus
been focused on finding different strategies to reduce the overestimation and find a Γ̃ as close
as possible to Γ. To better understand this class of approaches, the first element to introduce is
the propagation.

It is hard to indicate the first work to introduce this concept, however, traditionally it has
been attributed to Pulina and Tacchella [2010]. The idea is to extend the concept of Interval
Analysis [Moore, 1963] in the field of DNNs verification, partially mitigating the computational
limitation of the previous approaches, to compute the reachability set. In detail, these methods
propagate layer by layer the input domain represented as one bound for each input node. Naive
approaches compute the bound ([lnew, unew]) for each node of the network in an independent
fashion, applying node-wise the following linear mapping:

lnew = max(θ, 0) · l +min(θ, 0) · u
unew = max(θ, 0) · u+min(θ, 0) · l (5.6)

adding the biases if required and propagating the obtained bound through the activation func-
tion. Fig. 5.1 shows a numerical example of this approach. The propagation has been done
node-wise, following Eq. 5.6, for example, n1 = [(max(2, 0) ·0+max(−1, 0) ·1)+(min(2, 0) ·2+
min(−1, 0)·5), (max(2, 0)·2+max(−1, 0)·5)+(min(2, 0)·0+min(−1, 0)·1)] = [(0+0)+(0−5), (4−
1)] = [−5, 3]. For each layer, is then necessary to apply the activation function, in the example
ReLU. Recalling that ReLU(x)=max(x, 0), we obtain that a1 = [max(−5, 0),max(3, 0)] = [0, 3];
notice that this last operation is valid because the activation function is monotonic, however, this
is a characteristic shared with most of the common functions (e.g., ReLU, tanh, and sigmoid).

Figure 5.1: Example of the näıve bound propagation method. The DNN consists of two inputs, two
hidden layers of two nodes with the ReLU activation function, and one output. The input domain to
propagate is x0 : [0, 2] and x1 : [1, 5], after the node-wise propagation we obtain an overestimation for
the output node of y : [3, 43].

This method is simple and easy to implement; however, it ignores the interdependencies of
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the input variables and introduces an overestimation of the bounds for each application of the
activation functions (Fig. 5.4), resulting in a very loose estimation. To limit this overestimation
problem, in Wang et al. [2018b] the authors introduce the symbolic propagation method. The
intuition is to propagate the inputs symbolically as long as possible, to preserve the interdepen-
dencies between the nodes. A crucial requirement for this process is to always keep the equations
linear, this is necessary for the concretization step where a Linear Programming (LP) tool is
used. This is not a strong requirement for linear mapping, but can not be properly applied for
the non-linear activation functions. The presented algorithm that exploits this idea is called
Reluval and, as the name suggests, focuses on DNN with ReLU (or linear) activation functions.
ReLU is a piece-wise linear function, this means that if we know the phase of the function it is
possible to linearize it. The intuition is that every time ReLU must be applied, an LP query
is instantiated and three outcomes are possible: (i) if the lower bound is positive it means that
ReLU is in the active phase (f(x) = x); (ii) if the upper bound is negative it means that ReLU
is in the inactive phase (f(x) = 0); or (iii) the phase is unknown and, only in this last case,
Wang et al. [2018b] propose to concretize with the scalar values. Fig. 5.2 shows an example of
this approach. Crucially, a1 requires a concretization step because the lower bound (2x0 − x1)
can assume negative values in the input domain (e.g., x0 = 0 and x1 = 5) and the upper bound
(2x0−x1) can assume positive values in the input domain (e.g., x0 = 2 and x1 = 1). In contrast,
a0 is in the positive linear phase of ReLU because the lower bound (x0 + 3x1) can not assume
negative values (the worst case is when x0 = 0 and x1 = 1 that results in a lower bound of 3),
in this second case, it is possible to propagate the linear equation.

Figure 5.2: Example of the symbolic bound propagation method. The structure of the DNN is the same
as in Fig. 5.1. After the process, we obtain an overestimation for the output node of y : [6, 40], tighter
than the näıve approach.

Along with the symbolic propagation, in the same paper Wang et al. [2018b] propose another
improvement to reduce the overestimation: the iterative refinement. This technique obtains a
more accurate estimation of the output bound, leveraging the fact that the dependency error for
Lipschitz continuous functions decreases as the width of the interval decreases. In detail, iterative
refinement subdivides the input domain into smaller subdomains, computing the corresponding
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output bound for each of them. The union of the output bounds results in a more accurate
bound of the original area. Fig. 5.3 shows an example of this approach. The input domain is
split into two subdomains ([[0, 1], [1, 3]] and [[12], [3, 5]]), obtaining two different output bounds
([5, 23] and [20, 34]), the union of these two intervals provides the final bound [5, 34], which is a
strong improvement with respect to the previous approaches. Crucially, the symbolic propagation
and the iterative refinement can be used together to further reduce the overestimation.

Figure 5.3: Example of the näıve bound propagation method exploiting the (iterative) refinement. The
structure of the DNN is the same as in Fig. 5.1. After the process, we obtain an overestimation for the
output node of y : [5, 34], tighter than the näıve and the symbolic approaches. Crucially, this method
can be combined with the one of Fig. 5.2 to significantly improve the final result.

Moreover, the two concurrent works from Wang et al. [2018a] and Weng et al. [2018], pro-
pose a method to overcome the limitation of the concretization step, the linear relaxation.
Fig. 5.4 provides a high-level intuition of the approach. Suppose to have a symbolic equation
Eq(1), limited by a generic interval [l, u], to propagate through ReLU. Following the structure
of Fig. 5.4, the concretization method, depicted in (a), ignores the Eq(1) and sets the new inter-
val to [min(l, 0),min(u, 0)], losing the information of Eq(1). In contrast, the linear relaxation
preserves the Eq, allowing to maintain the interdependencies between the nodes. The post-
activation bounds are visually represented in (b) with two parallel lines, more formally the new
bound is [h(x), g(x)], where g(x) = u

u−lEq and h(x) = u
u−l (Eq − l). Beyond the theoretical

intuition, it is also possible to demonstrate geometrically that the area between the lines is
smaller in (b), and this corresponds to a lower overestimation. For more details, we refer to
the original papers [Wang et al., 2018a; Weng et al., 2018]. The follow-up work from Zhang
et al. [2018], shows that the linear relaxation method can be extended to different activation
functions, Fig. 5.5 shows an example of the method on the hyperbolic tangent (tanh).

In recent years, research in the field of formal verification for DNN has grown exponentially.
Although the basic structure of the most recent work is based on the presented foundations,
more efficient approaches, improvements, and follow-up works have been developed. Among
the others, we mention α/β-crown which is widely considered the state of the art among the
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(a) Concretization (b) Parallel Relaxation

Figure 5.4: Visual representation of the difference between the näıve concretization and the linear relax-
ation.

reachability approaches [Wang et al., 2021].

OPTIMIZATION APPROACHES

In contrast to the previously presented methods, optimization approaches do not try to compute
the reachable set (or output domain). A verification algorithm of this family searches for a
concrete input x0, that violates the property, if such input does not exist it means that the
property is guaranteed. Recalling the definition of satisfiability formulation for an FV problem
(previously introduced in this section). A verification query consists of a tuple ⟨N,P,Q⟩, Given
that Q encodes the negation of the required property, a SAT result indicates that the property is
violated (and the returned input x0 triggers the violation), while an UNSAT result indicates that
the property holds.

For example, suppose we wish to verify that the DNN in Fig. 5.6 always outputs a value
strictly smaller than 7; i.e., that for any input x = ⟨v11, v21⟩, it holds that N(x) = v14 < 7. This is
encoded as a verification query by choosing a precondition that does not restrict the input, i.e.,
P = (true), and by setting Q = (v14 ≥ 7), which is the negation of our desired property. For this
verification query, a sound verifier will return SAT, alongside a feasible counterexample such as
x = ⟨0, 2⟩, which produces v14 = 22 ≥ 7. Hence, the property does not hold for this DNN.

However, these kinds of problems suffer from two limitations: (i) they require a SAT solver,
which struggle to scale with large DNN; and (ii) it is hard (and in some case even not pos-
sible) to work with non-linear activation functions, which is a structural characteristic of the
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Figure 5.5: Generalization of the linear relaxation to different activation functions (tanh in the figure).

DNN. One of the first approaches to deal with this problem is from the work of Bastani et al.
[2016]. They propose to reduce the FV task to a linear programming (LP) problem, exploiting
a case-splitting approach to deal with the piece-wise linearity of the non-linear ReLU activation
function. Considering y = ReLU(x), the function can be in two linear phases:

1. Active: (x ≥ 0) ∧ (y = x)

2. Inactive: (x < 0) ∧ (y = 0)

the idea is to perform a case-splitting, enumerating all the possible states of the function. Fig. 5.7
shows an example. If one of the leaves provides a valid assignment, the algorithm returns SAT,

Figure 5.6: A simple neural network with 2 inputs and 1 output.
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and the variables assignment is a counterexample that violates the property. Otherwise, to
return UNSAT it is necessary to explore the whole search tree.

It is clear that this approach suffers from serious scalability limitations on the number of
ReLU nodes. However, this approach is sound and complete (which means, in the context of FV
for DNN, that the algorithm always returns the correct answer), and has been improved through
different algorithmic optimizations and search heuristics [Ehlers, 2017; Lomuscio and Maganti,
2017; Dutta et al., 2017]. An alternative encoding of the problem is based on the mixed-integer
linear programming (MILP) Tjeng et al. [2018], however, it suffers from the same scalability
limitations.

Figure 5.7: High-level overview of the case-splitting approach.

Reluplex [Katz et al., 2017] A breakthrough in this field of research has been done by
Katz et al. [2017] with Reluplex, a sound and complete approach that overcomes the scalability
problems of the previous methods. Reluplex is an SMT-solver, based on the simplex algorithm
that exploits a typical concept for the solvers: laziness. The idea is to postpone the actions that
can cause an explosion in the number of states, which is in contrast with an eager approach, such
as the case-splitting, that initially enumerates all the possible states. The algorithm follows the
structure of the simplex method [Nelder and Mead, 1965], with the addition of three fundamental
features:

1. Each ReLU node is represented with two variables, the pre-activation variable xw and the
post-activation variable xa.

2. xw and xa are handled as independent variables for the simplex algorithm; this means that
they can temporarily violate the ReLU constraint (i.e., xa=max(xw, 0)).

3. xw and xa are fixed incrementally, and only if necessary, to find a valid assignment (i.e.,
SAT).
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The algorithm is sound and complete, however, in some corner cases, the näıve process may
not terminate. This happens when the assignment repeatedly violates the ReLU constraints,
getting stuck in a loop. In this case, Reluplex performs a case-splitting, expanding the research
tree. In recent years, the algorithm has been improved with different optimizations (e.g., bound
tightening and back-jumping), the improved version of the algorithm is Marabou, presented in
the work of Katz et al. [2019], and is widely considered the state of the art in the optimization-
based approaches.
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VERIFICATION OF DECISIONS (PROVE)

In the previous chapters, we introduced the concept of formal verification for neural networks
(FV). However, despite the abundance of both Deep Reinforcement Learning (DRL) systems and
FV techniques, little work has been published on demonstrating the applicability and usefulness
of verification techniques to real DRL controllers, especially when applied to robotic tasks.
In this chapter, and from a different perspective also in Chap. 7, we try to bridge the gap.
In this chapter, in particular, we propose a novel verification tool, ProVe, designed for the
formal verification of DRL policies, which typically focus on decision-making problems. We also
introduce a novel metric, the violation rate, to formally evaluate the performance of a DRL
policy from a safety-oriented perspective. Moreover, ProVe can solve the counting version of the
verification problem, computing the portion of the input domain that cause a violation of the
requirements. This can overcome the limitations of the binary SAT or UNSAT answer and can be
exploited in different ways that we will show in the next sections.

6.1 MOTIVATION

Following the recent trend in formal verification for Neural Networks, we propose to design a
set of safety properties, that encode different constraints on the behavior of the agent, as a
complementary metric for the reward. Ideally, given a safety property and a neural network,
a verification framework should either guarantee that the property is always satisfied or return
counterexamples [Liu et al., 2019]. The effectiveness of such methodology relies on the estimation
accuracy of the output bounds [Wang et al., 2018b] and has been successfully addressed by
several recent studies [Wang et al., 2018a, 2021]. One of the main limitations of these approaches
concerns the design of the safety properties. State-of-the-art methods have proven to be fast
and efficient only if the input domain is strict and the target behavior is well known [Katz
et al., 2019]. However, formalizing a set of properties that satisfy these requirements may not be
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possible without a deep prior knowledge of the environment, and, forcing the agent to respect
such strict requirements, may negatively affect the final policy generated by the DRL algorithm.
In contrast, in this paper, we focus on the formal verification of properties that describe the
general behavior of the agent (i.e., behavioral properties), and that aim at ensuring that the
policy makes rational decisions (e.g., if there is an obstacle close to the right never turn right).
Crucially, we show that a model that respects such soft constraints is overall safer than a model
evaluated only on the long-term reward. Notice that, properties of this form typically require
large input domains, as they need to cover a wide variety of possible input configurations for the
DNN (i.e., possible situations for the agent). As a consequence, they are rarely respected in the
whole input domain and state-of-the-art approaches typically return only SAT (i.e., the property
is respected) or UNSAT (i.e, the property is violated with at least one input configuration),
failing to provide useful information on the safety of the model. Against this background, we
introduce ProVe a formal verification tool for DNN based on interval analysis [Wang et al.,
2018a], designed to verify safety properties for decision-making tasks defined over large input
spaces. While previous approaches provide verification tools that aim at verifying whether the
bound of an output of the network lies in a given interval, in a DRL context, DNNs typically
encode decision-making policies and require the analysis of multiple outputs, considering the
relationships among them. To verify this kind of property we need to modify the standard
analysis of the output interval, in fact, as detailed in Chap. 5, even in an ideal scenario with a
perfect estimation of the output intervals, state-of-the-art tools can not always provide useful
information on the relationships among the outputs (i.e., can not exploit the comparison rules
of the intervals analysis [Moore, 1963]). To this end, in this paper, we propose a novel approach,
that provides an accurate shape estimation of the output functions, by computing an iterative
bisection of the input intervals. In detail, for a property that should be evaluated in the global
domain I, we analyze independently a set of n smaller domain in (s.t., I =

⋃n
i=1 ii). This

paves the possibility to handle properties encoded in the form described above. Moreover, we
ca exploit the computation independence of the intervals to encode the process in a parallel
fashion (e.g., multi-core CPU or GPU), improving the performances of the standard verification
tools and hence handling very large input spaces. Crucially, with our approach, it is possible to
compute the size of the domain that violates the safety property, providing a safety metric for
the evaluation of a model (violation rate). Finally, we empirically evaluate ProVe on different
domains including (i) the airborne collision avoidance system (ACAS) [Owen et al., 2019], used
in literature as a standard benchmark, and (ii) trajectory generation for the commercial Panda
manipulator.

6.2 BEHAVIORAL PROPERTIES

Verification of DNN for decision-making requires the comparison between the outputs and this
may be difficult to achieve with previous approaches. In particular, Fig. 6.1 visualizes different
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scenarios of our output analysis as a 2d graph, to simplify its understanding. Notice that a
network with n > 1 requires a multi-dimensional graph, however, we assume that each point
on the x-axis represents a tuple of n inputs (x ∈ X) in an arbitrary order (as it does not
affect the analysis), we represent the outputs (f(X)) on the y-axis. Fig. 6.1a shows the typical
result of previous verifiers: a generic representation of a single output function. This is also
an ideal scenario where the overestimation problem is solved (i.e., the output bounds [a, b]
matches the minimum and maximum of the output function). However, Fig. 6.1b clearly shows
the limitations of such methods in the verification of decision-making tasks, where y0 and y1
represent the output functions generated by two nodes of a generic network. In particular, it
is not possible to infer which output action will be selected as they only compute the output
bounds, without considering the shape (and the relationship) of the output functions. The main
insight of ProVe is to compute an accurate estimation of the output function shape, subdividing
the input area into multiple subareas and computing the previous operations for each subarea.
Fig. 6.1c shows that, through this process, it is possible to obtain a better estimation of an
output shape. Finally, Fig. 6.1d considers multiple outputs and subareas, allowing ProVe to
state that output y0 is the output that the network will choose for the given input area (i.e., y0
always returns a higher value than the other outputs). This analysis of the relationships among
the network outputs is necessary to formally verify a decision-making property.

Figure 6.1: Explanatory output analysis of: (a) one output function with one subdivision; (b) decision-
making problem with two outputs and one subdivision. (c) Estimation of an output function shape, using
multiple subdivisions. (d) Output analysis with three outputs and multiple subdivisions.

DEFINITION OF SAFETY PROPERTIES FOR DECISION-MAKING

Following the formulation provided by Liu et al. [2019] (and adopted as the standard in the
previous state-of-the-art works), a safety property for a neural network formalizes an input-
output relationship. In detail, a safety property can be formalized in the following form:

Θ : If x0 ∈ [a0, b0] ∧ ... ∧ xn ∈ [an, bn] ⇒ yj ∈ [c, d] (6.1)

where xk ∈ X, with k ∈ [0, n] and yj is a generic output.
A property in this form aims at verifying if an output of a network lies in a specific interval.

This formulation can be applied to many problems related to robotics and deep learning in
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general (e.g. the velocity limit of a motor or the probability in a classification task). However,
even if it is possible to adapt this formulation to verify simple decision-making properties,
it requires manually modifying the input network and introduces overhead in the verification
process.

In contrast, we propose a different formulation, specifically designed for decision-making
problems:

Θ : If x0 ∈ [a0, b0] ∧ ... ∧ xn ∈ [an, bn] ⇒ yj > yi (6.2)

We refer to these properties as safe-decision properties as they can be used to ensure that a
given action (e.g., yj) is always preferred over the others for a given input configuration.

Following the insights of the previous section, we exploit this proposition to prove (or deny)
a variety of properties in the form of Prop. 6.2. In detail, ProVe compares the computed bounds,
verifying if the values of one of them are strictly lower than the others, which means that the
DNN never selects the action related to the output with the lower value. As an example, to verify
properties for a simplified navigation scenario encoded by a DNN with: (i) inputs xi ∈ [0, 1] with
i = 0, .., 3, representing the normalized distance from an obstacle in the four cardinal directions
(1 translates in a distance ≥ 1m in that direction), where x0 is the right distance and x1 is the
left distance. (ii) outputs y0 = right, y1 = left, representing the directions where the agent can
turn. We could be interested in a property as Θ: If an obstacle is close to the right and other
directions are obstacle-free, always turn left. Assume we measured the minimum distance from
an obstacle (0.07m) that allows our autonomous drone to avoid a collision when turning in the
opposite direction, supposing the worst case, where the robot is moving at its maximum speed.
We can exploit this constraint to formalize the safety property in the form:

Θ : If x0 ∈ [0, 0.07] ∧ x1, x2, x3 ∈ D ⇒ y0 < y1 (6.3)

where D = (0.07, 1]. To verify the relation between two (or more) outputs, ProVe relies on the
interval algebra of Moore [1963]. In particular, supposing y′ = [a, b] and y′′ = [c, d] we have the
preposition:

b < c ⇒ y′ < y′′ (6.4)

To better explain the key problem of previous interval analysis-based approaches, that pre-
vent a direct application to decision-making, in Fig. 6.1 we show a simplified visual example
of an output analysis for a decision-making property. In a typical scenario, we often have that
max(y1) > min(y0), hence we can not assert anything on the property. Fig. 6.1b shows an
example of this behavior, where d ≮ a, (i.e. the bounds overlap). In this scenario verification
frameworks can not formally verify the property (i.e., we do not have enough information to
state if the property condition is true or false). ProVe directly addresses this problem by com-
puting the propagation for a subset of the input area to obtain a more accurate estimation of the
output function shape (Fig. 6.1c). This leads to Fig. 6.1d, where y1(x) < y0(x) for any x ∈ X
(X is the set of the possible inputs), which translates, de facto, in y1 < y0 (i.e. the network
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always choose the action represented by y0 inside the input area specified by the property).
Furthermore, y2 ≮ y1 (the agent can choose y2 in that input domain).

6.3 PROPERTY VERIFIER: PROVE

In this section, we address the huge amount of memory and time required to compute and verify
the output bounds for decision-making properties. Furthermore, we introduce a violation rate
metric to measure the reliability of a model with respect to a property, showing that in some
scenarios, we can design a simple controller to ensure the correct behavior of a DNN in the entire
input area.

# Function that implements the actual algorithm , we assume to have the

# following functions for the support operations:

# -> generate_matrix

# -> split_area

# -> update_violation

# -> get_output_bound

def ProVe( DNN , areas , _property , eps ):

mul_matrix = generate_matrix( DNN )

areas = split_area( areas , eps , mul_matrix )

for sub_area in areas:

output_bounds = get_output_bound( DNN , areas )

violated_areas = []

proved_areas = []

violation_rate = 0

for bound in output_bounds:

test = check_property( bound , _property)

if test is VIOLATED:

violated_areas.append( bound )

violation_rate = update_violation ()

if test is PROVED:

proved_areas.append( bound )

if len(areas) != 0:

return ProVe( DNN , areas , _property , eps )

return violated_areas , violation_rate

Listing 6.1: A python-like implementation of ProVe (Property Verifier) in the sequential version.

Considering the pseudo-code in Listing 6.1, ProVe takes as input: (i) a trained DNN; (ii)
the input area encoded as a matrix, (iii) the property to verify, and (iv) a discretization value ϵ.
ProVe proceeds by performing an iterative recursive splitting process using a matrix encoding.
In more detail, ProVe generates the multiplication matrix for the iterative splitting of the input
area, performing the first input split. Then, ProVe propagates the input to compute the output
bounds for each unverified sub-areas (a subdivision of the former area, as described in Chap. 5).
This is the most computationally demanding part of ProVe (the number of sub-areas is expo-
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nential in the recursion depth). However, this procedure is easily parallelizable on GPU, given
that the propagation of each sub-area is independent and the computed output bounds can be
analyzed individually, sequentially loading on the GPU memory a subset of the former sub-areas.
After these preliminary operations, ProVe evaluates the safety property for each output-bound,
returning three possible outputs: (i) the property is violated; (ii) the property holds, or (iii) we
can not conclude anything on the property in this area (i.e. the bounds overlap as detailed in
Chap. 5). In the first two cases, the property is verified (proved or denied) and we remove the
verified area from the matrix. In the third case, the area matrix is not empty, and we recursively
call the algorithm with the remaining unverified sub-area as input. Moreover, during the main
loop, the violation rate is constantly kept updated. In general, a property could require an
uncountable number of splits to be verified. For this reason, we introduce a discretization value
ϵ to create an upper bound on the possible number of iterations. If the area matrix is empty,
we return all the violated areas as counterexamples along with the violation rate that represents
an overestimation of the probability for a property to fail in a real execution. If the violation
rate equals 0, the property is formally verified in the given input area (i.e. the property is true).
Finally, Fig 6.2 reports a high-level overview of the main loop.

Figure 6.2: High-level overview of ProVe.

Matrix Encoding The verification of decision-making DNNs may require a large number
of area splitting, hence to use this technique in practical applications the iterative splitting
process must be very efficient. The core idea behind ProVe is to exploit matrix operations
for the iterative splitting process. Matrix multiplication is a widely used operation for several
optimizations and inference tasks, it is known to be highly parallelizable and there exist several
dedicated and efficient implementations. 1. We encode the area splitting by using a matrix A0

of size m× 2n, where m is the number of entries (i.e. the sub-areas to split) and n the number

1For Prove we rely on NumPy, a Python package for scientific computing, https://numpy.org/
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of input nodes (i.e. the bounds for each node, which are a couple of values). To split the k-th
input node, we first generate a multiplication-matrix B2n×4n. These are structured as:

A0
m×2n =

 [a0,0, b0,0] ... [a0,n, b0,n]
... ... ...

[am,0, bm,0] ... [am,n, bm,n]


B2n×4n =

[
Ĩ2n

′
Ĩ2n

′′
]

In detail, the matrix B is formed by two identity matrices. Both these matrices maintain
the values of an identity matrix 2n× 2n, except for the following elements:

Ĩ2n
′
[2k][2k + 1] = 0.5 Ĩ2n

′
[2k + 1][2k + 1] = 0.5− ϵ,

Ĩ2n
′′
[2k][2k] = 0.5 Ĩ2n

′′
[2k + 1][2k] = 0.5 + ϵ

where ϵ is required to solve the infinite splitting loop that we analyze in the next section. The
result of matrix multiplication A1 = A0×B is a matrix m× 4n, where a row contains two parts
of the corresponding input area, split on the desired k-th node. Finally, in time O(1) we reshape
the matrix A1 to the desired matrix A1

2m×2n
2:

A1
2m×2n =

 [a0,0, b0,0] ... [a0,n, b0,n]
... ... ...

[a2m,0, b2m,0] ... [a2m,n, b2m,n]


Input Discretization The continuous domain of the input space makes it always possible
to split an input area, hence ProVe could, in the same specific worst-cases, loop infinitely on
the iterative refinement process. To address this, we introduce a discretization value ϵ to limit
the input precision and ensure the convergence of our algorithm in a finite number of steps.
Crucially, the ϵ parameter could be as small as required by the application, however, this will
have an impact on the worst-case memory and computation required by the approach. In
particular, both the time and space complexity of the algorithm are exponential in ϵ, as we show
in the previous analysis. Notice that, ϵ can be considered as a lever to address the trade-off
between analyzing input with higher precision and maintaining the computation manageable.
For several applications, and specifically for robotics, ϵ can be tuned considering the precision
of the sensing system. In our mapless navigation task, we set ϵ to be the precision of the
lidar system. With this setting ProVe was able to verify the application within an acceptable
amount of time on a standard computational architecture (refer to the evaluation section for
more details).

2Note that these operations can be performed efficiently by exploiting optimized routines implemented in
standard packages for linear algebra such as NumPy.
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Splitting Heuristics In addition to our matrices encoding and the ϵ discretization value, we
design a heuristic to select which bound to split at each iteration and maximize the entries
removal from the matrix at each recursion cycle (i.e., reduce memory and time required for the
computation). We propose a comparison between the worst case (i.e. all areas reaches precision
ϵ, which is the maximum recursion depth) and three heuristics: (i) random: randomly selects
one of the available nodes (i.e. nodes with bound size ≥ 0), (ii) biggest-first selects the nodes
with the largest bound size and (iii) best-first selects the nodes that most influence the output.
An estimation of the influence is computed on the first layer of the network, using the absolute
weight value of each input node.

Figure 6.3: Splitting heuristics evaluation overview. A) Growth of the matrix size within the depth of
the recursion. B) Distribution of checked areas by our heuristics within the depth of the recursion.

To evaluate the best heuristic, we performed an initial evaluation in a simplified version of
the CartPole benchmark Sutton and Barto [2018]. In this task, an agent has to move a cart
left and right (which are the two outputs) so that a pole can stand (within a certain angle) as
long as possible. In our simplified setting, we only consider the angle and the velocity of the
pole as input to provide better graphical visualization of the results. In detail, we performed
our evaluation on the property:

Θeval: If the pole is falling on the right, the cart must be moved in the same direction to stand
the pole.

Figure 6.3A shows the matrix size (i.e., the memory) required to verify this property (y-axis)
with respect to the recursion depth (x-axis). Notice that only the random heuristic presents
variance over five statistically independent runs as the other two are deterministic. Clearly, in
this explanatory example, the biggest-first is the best heuristic. Figure 6.3B confirms this result,
showing the distribution of the checked area for each recursion depth. In detail, biggest-first

80



CHAPTER 6. VERIFICATION OF DECISIONS (PROVE)

finds a sensible amount of areas to remove at iteration 13, while best-first and random strategies
find a similar situation ≈ 6 iterations later. In summary, the biggest-first heuristic shows a
memory improvement of over 90% after 21 iterations with respect to the worst case, where all
the areas are found at the maximum depth.

ALGORITHM ANALYSIS

In this section, we first provide a convergence proof, followed by the complexity in terms of time
and space.

Property 1. Given an input area and a discretization value ϵ, ProVe always converges in a
finite number of steps without loss of precision.

Proof. To prove the convergence in a finite number of steps we demonstrate the following prop-
erties: (i) there are no infinite loops in the iterative splitting; (ii) splitting an area into two
sub-areas covers all the discrete values of the range up to precision ϵ. For the latter, we use ϵ
in the computation of the mean value because the mean of an area could have higher precision
with respect to ϵ, producing an infinite loop. This is due to the fact that the discrete values at
a higher precision than ϵ are odd (it is ambiguous to divide it into equally sized groups).

Suppose an ϵ = 0.1 and a split operation of the range [0.0,0.1]; we first compute the mean
0.05, splitting in [0.0,0.05] and [0.05,0.1]. We then round these values to the specified precision,
obtaining [0.0,0.1] and [0.1,0.1]. The introduction of ϵ allows for rounding alternatively up and
down in order to avoid infinite recursion. For the former, it is trivially true that we cover all the
discrete values of the range up to precision ϵ, because if the mean between the extreme values of
the range is at precision ϵ, then the union of the sub-areas returns the original one. Moreover,
if the mean has higher precision than ϵ, we round the mean value once to the next bigger value
at precision ϵ and once to the smaller ones. In particular, there is no value at precision ϵ that
is between these two.

Time Complexity Given the number of ranges in input n and the discretization value ϵ, we
define the range size as l (fixed to 1 by normalization) and the time cost of the control operation
(propagation and property verification) as op. The time required for matrix multiplication is
O(mnp) where the input matrices are m × n and n × p. The structures of the matrices used
by ProVe are always in form of m × n and n × 2n, where m is dependent on the iterations of
our algorithm; so the time required for multiplication is O(n2m). For construction, we know
that the number of rows (m) doubles up at each iteration, i.e., m = 2i where i is the number of
iterations already performed. The time complexity of the algorithm becomes O(

∑I
k=1 n

22(k−1))

that can be written as O(n2
∑I

k=1 2
k2−1). Applying Gauss formula O(n

2

2 2
I(I+1)

2 ) where I is the
total number of iterations of the algorithm. The total number of iterations required from the
algorithm depends on the range size l and the precision ϵ; in fact, each iteration divides an
area into two equally sized sub-areas. For a single input range that starts from 0 to 1 we need
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O(log2⌈ l
ϵ + 1⌉) and the total number of operation is I = O(n log2⌈ l

ϵ + 1⌉). Finally, the time

complexity of the algorithm is O(opn2

2 2
(n log2⌈

1
ϵ+1⌉)2

2 ). In summary, the time complexity of ProVe
is exponential both when ϵ decreases and n increases.

Space Complexity Recalling the notation of the previous section and the fact that at each
iteration we double up the number of rows of our matrix, ProVe requires O(2I

n
) rows and always

n columns for the matrix. The total space required is then O(n2I
n
) that is O(n⌈1ϵ ⌉

n). This
analysis further motivates the introduction of the ϵ discretization value to limit the depth of the
recursion and the search for a heuristic, to limit the complexity of verification approaches.

Completeness of the Method ProVe is a sound method but, in its naive implementation, it
is not complete. However, ProVe can be considered complete under one of these two assumptions:
(i) if the discretization parameter ϵ allows, in the worst case, to completely explore the generated
tree and verify independently all the leaves, the method can verify the whole input-domain,
returning a discretized but complete answer; or (ii) exploiting techniques from the optimization-
based algorithms for verification (refer to Chap. 5 for details), and assuming to have only ReLU
activations functions, ProVe can exploit the separation of the ReLU activations in the two linear
phases.

6.4 THE VIOLATION RATE

As we discussed in Chap. 5, while standard optimization methods can only return SAT or UNSAT, a
key component of our approach is to quantify the number of violations compared to the complete
reachable set. We introduce a violation rate metric to infer how a trained DNN performs with
respect to the given properties. We define this metric as the percentage of the input area that
causes a violation, to compute this value at each step we normalize the size of the area that
violates the property with respect to the size of the original input area. Crucially, the violation
rate is an upper bound for the actual probability of failure as visually shown in Fig. 6.4. In
detail, the left Fig. shows the distribution of the state over 10000 episodes of the CartPole
scenario [Sutton and Barto, 2018], while the right one shows the input configurations that cause
a violation of a safety property in that environment. Clearly, the states where failures occur are
rarely encountered input. This confirms that an empirical evaluation would most probably not
encounter those states, ignoring errors that may appear during the deployment in a real-world
context.

Definition 6.4.1 (Violation Rate). Given a set of behavioral properties Π with input domain
X , a neural network function fθ(x) and the corresponding estimated reachability set Γ(X , fθ) :=
{y : y = fθ(x), ∀x ∈ X}. Defining XUNSAT as a subset of the original domain X such that

Γ(XUNSAT, fθ) ∩ Y = ∅, we define the violation rate as follow: v = |XUNSAT|
|X | ,
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Figure 6.4: Overview of (left) the most frequent input configuration encountered in a typical execution of
the CartPole environment and (right) the configurations found by ProVe, that cause a property violation.

Definition 6.4.2 (Safe Rate). Given a set of behavioral properties Π with input domain X ,
a neural network function fθ(x) and the corresponding estimated reachability set Γ(X , fθ) :=
{y : y = fθ(x), ∀x ∈ X}. Defining XSAT as a subset of the original domain X , such that

Γ(XSAT, fθ) ⊆ Y, we define the safe rate as follow: s = |XSAT|
|X | .

Finally, in the evaluation section, we show how to exploit the violation rate to design a
simple controller to check at run-time if the current network input causes a violation, formally
guaranteeing the safety related to the desired properties.

6.5 RESULTS

We empirically evaluate ProVe on two domains: ACAS, trajectory generation for a robotic
manipulator, and mapless navigation. For these domains, we train the DNN by using the
Rainbow algorithm [Hessel et al., 2018]. Data are collected on a commercial desktop computer
(equipped with a GPU NVIDIA2070, an 8-core CPU, and 16gb RAM), with a c++ code based
on CUDA11.

ACAS XU Comparison The airborne collision avoidance system (ACAS), designed to pre-
vent collision between aircraft, has been widely adopted by previous verification approaches
[Katz et al., 2017; Wang et al., 2018b]. This system consists of a set of networks, each one with
five inputs: (i) distance between ownship and intruders, (ii) heading of ownship with respect to
an intruder, (iii) heading of the intruder relative to ownship, (iv) speed of ownship and (v) speed
of the intruder; and five outputs to encode the action to take to avoid the collision: (i) clear of

83



CHAPTER 6. VERIFICATION OF DECISIONS (PROVE)

conflict (which means that no action is needed), (ii) weak right, (iii) strong right, (iv) weak left
and (v) strong left. For our evaluation, we rely on the HorizontalCAS implementation of Owen
et al. [2019], which provides a set of trained networks and an extensive dataset of safety-critical
situations.

In the previous sections, we introduced the problem of the formalization of the safety prop-
erties. Designing a set of properties that cover all the possible violations could be hard and
requires a deep prior knowledge of the environment. In some cases (e.g., real-world applications
or robotics) this process is unfeasible. To support our claims, in Table 6.1 we show that, even
the 15 properties of ACAS, used as standard metric to evaluate the safety in the state-of-the-art
works [Wang et al., 2018a; Katz et al., 2017], are not informative enough to guarantee collision
avoidance. In contrast, we propose to design a small set of behavioral safety properties, that
aims to ensure that the agent makes rational decisions, instead to verify the complete set of un-
safe possible actions. We exploited ProVe to obtain the violation rate on only two fundamental
properties:

θL: If there is an intruder close on the left, never turn left.

θR: If there is an intruder close on the right, never turn right.

Table 6.1 shows our results. We compare six models that achieve the maximum cumulative
reward for the task, but with significantly different violation rates. To obtain an estimation of
the real collision we rely on the safety-critical configurations provided by Owen et al. [2019],
comparing the behavior of our models with the correct actions of the dataset. More in detail,
from the multitude of trained models that achieve similar rewards, we select a subset with a
violation rate ranging from 50 to 4.8 (our best result) with a step of 10. Notice that, in contrast
to the standard formulation, for our behavioral properties it is difficult to obtain a violation rate
of zero, having to cover a huge amount of possible situations. Moreover, we believe that this
is not an objective. In some limit cases, take dangerous decisions could provide benefits in the
long term.

Table 6.1: Comparison between the real collision probability and the violation rate of our behavioral
properties. The table also shows the number of collisions for a model that respects all the original 15
ACAS properties.

Model Properties V. Rate (%) Collision (%)
acas 50 θL, θR ≈ 50 14.21
acas 40 θL, θR ≈ 40 9.34
acas 30 θL, θR ≈ 30 8.22
acas 20 θL, θR ≈ 20 5.04
acas 10 θL, θR ≈ 10 3.71
acas 05 θL, θR ≈ 5 0.72
acas og θ0, ..., θ15 ∅ 0.56
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Our results show a strong correlation between the violation rate and the real collision es-
timation, highlighting the limits of the reward for the evaluation of safety-critical tasks and
the relevance of our novel metric. Finally, Table 6.1 shows that the models that obtain the
lowest violation rate on our properties (acas 05 ) result in a similar collision number to the one
that respects all the 15 original properties (acas og). This further motivates our claims and
the hypothesis that our behavioral properties, designed without a deep prior knowledge of the
environment, provide a good indicator of the safety of a model.

Mapless Navigation In mapless navigation a robot must reach a given target without a
map of the surrounding environment, using only local observation to avoid obstacles. This
is a challenging scenario for DRL that has attracted significant attention in recent literature
[Zhang et al., 2017; Wahid et al., 2019]. In detail, we consider a Turtlebot3 navigating with
constant linear velocity, which is a widely used platform in several previous works focusing on
DRL for navigation [Tai et al., 2017, 2016]. Here, we use Unity as a simulator [Juliani et al.,
2018] (previous work [Marchesini et al., 2019] demonstrates that this is an efficient and realistic
simulation of the behavior of the robot).

In our setup, the network has twelve inputs: (i) the laser sensor is used to collect sparse
11-dimensional scan values x0, .., x10 normalized ∈ [0, 1] and sampled between -90 and 90 deg in
a fixed angle distribution. The lidar sensor precision is the manufacturer specification used to
set the ϵ discretization value; (ii) the heading of the target with respect to the robot heading
(x11 normalized ∈ [0, 1]); and three outputs for the angular velocity (i.e., [-90, 0, 90] deg/s).

We evaluate the robustness of the network with three different properties, that represent im-
portant behaviors that the agent must respect to be considered reliable in navigating a polygonal
map without collision with the surrounding walls.

ΘT,0: If the target is in front of the robot and no obstacle is detected, go straight.
ΘT,1: If there is an obstacle close to the left never turn left.

ΘT,2: If there is an obstacle close to the right never turn right.

Trajectory Generation for a Robotic Manipulator We chose safety verification for
robotic manipulators because they are critical assets for industrial environments. Our task
is to rotate each joint of the robot to generate a real-time trajectory to reach a target (a similar
task is considered in the work of Gu et al. [2017] and in the work of Marchesini et al. [2019]). In
our setup, the input layer of the network contains 9 nodes normalized in the range [0, 1]: (i) one
for each considered joint and (ii) the last three to encode the target coordinate. We use 12 nodes
in the output layer: each joint is represented by 2 nodes to decide if it should move ω degrees
clockwise or anti-clockwise. This encoding of the output allows a straightforward verification
process for our tool (i.e., one node represents only one specific action). Furthermore, operating
the manipulator in the Cartesian space, we can use ω as the ϵ value. Hence, to formally verify
if the manipulator operates inside its work-space, we consider properties in the following form:
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if the current angle of a joint ji is equal to one of its domain limits, whatever the configuration
of the other joints and whatever is the position of the target, the robot must not rotate ji in
the wrong direction (i.e. an action that rotates ji causes the robot to exit from the work-space).
Considering the network architecture and our task formalization, we design safety properties as:

Table 6.2: Execution time comparison between Neurify and ProVe on the standard properties of the
ACAS Xu dataset. For each group of properties, the table shows the mean computation time (seconds)
and the average speed up (x). Given the deterministic nature of the considered approaches, the variations
between different runs on the same hardware are negligible, therefore we reported only the average values.

Property Neurify (sec) ProVe (sec) Gain (X)
ΘA,1 1037.37 345.12 3.01
ΘA,2 19352.12 339.72 56.08
ΘA,3 1359.89 159.22 8.54
ΘA,4 113.62 132.31 0.86
ΘA,5 22.07 5.16 4.27
ΘA,6 4.91 11.5 0.42
ΘA,7 1278.7 64.84 19.72
ΘA,8 412.29 11.21 36.78
ΘA,9 643.8 42.97 14.98
ΘA,10 60.01 10.08 5.95
ΘA,11 0.51 5.79 0.08
ΘA,12 8.82 8.86 0.99
ΘA,13 34.76 10.34 3.36
ΘA,14 23.74 8.09 2.93
ΘA,15 1136.55 8.22 16.61
Total: 25526.52 1163.43 21.94

ΘP,0: If the first joint current rotation is close to the left limit of the workspace, never rotate
that joint on the left.

Property ΘP,0L represents a configuration where the angle of joint j0 equals its limit on the
left (i.e., a normalized value 1) and whatever values the other inputs of the network assume,
the output value corresponding to the action rotate left, must be lower than at least one of the
others. For each joint ji we consider two properties, one for the left limit (ΘP,iL) and one for
the right limit (ΘP,iR).

Discussion In order to collect statistically significant data, we performed different training
phases for each task, using different random seeds [Cédric et al., 2019]. We report the mean
and standard deviation (smoothed over one hundred episodes) for each task, considering (i)
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Figure 6.5: Comparison between the success rate and the safe rate in our environments.

the success rate (i.e., the number of successful episodes over 100 sequential steps) and (ii) the
safe rate (the complementary metric of the violation rate, used for a clearer visualization of the
graphs).

Fig. 6.5 shows that the violation rate is not directly correlated to the success rate (or cu-
mulative reward). In particular, in the early stage of the training, the safe rate is surprisingly
high (i.e., the model is overall safe), we motivate that because the agent has not yet learned the
task, consequently, it tends to stay still or move around the same point. Afterward, the safe
rate starts to follow the trend of the success rate, reaching the best values, this is the funda-
mental phase, where the agent starts to learn the policy with a good generalization for unseen
situations. Moreover, Fig. 6.5 highlights the problem described in the previous sections, the
safe rate becomes unstable. A multitude of models with the same performance for the standard
metric obtains significantly different values from the safety point of view. Moreover, our results
show an overall drop in the safety of the models in the last stage of the training, in general,
the agents start to learn shorter paths, taking more dangerous actions to maximize the reward.
This further motivates the need to use additional evaluation metrics, before the deployment in
a real-world scenario. Finally, Table 6.2 shows that ProVe can also be applied to the standard
properties, providing a performance comparison between ProVe and Neurify [Wang et al., 2018a].
On average, ProVe achieves a speedup up of 20x over Neurify. In particular, we found a huge
improvement on the most time-demanding properties (i.e. θ1, θ2, θ15) while we obtain slightly
worse performance on the simplest ones. We motivate this as our approach requires loading all
the data on the GPU memory before the operations, and this is a bottleneck on simple (and
fast to verify) properties.
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Simple Controller Due to the low violation rate of our properties, it is possible to design
a simple controller to guarantee the correct behavior of the network. To illustrate this, we
describe the process to decide whether the controller can be designed for the trajectory generation
environment. From the manipulator data sheet, a step of 2 degrees (i.e. the ω value of our
controller) requires ≈ 0.01s to be executed by the arm and, with the violation rate presented
in Fig. 6.5, a complete search through the array of the sub-areas that cause a violation, always
requires less than 0.01s. Ideally, this means that we can verify if the input state leads to a
violation at each iteration, without lags in the robot operations (notice that this depends on the
hardware). In contrast, we computed that with a violation rate of ≈ 12%, a complete search
requires approximately 1.02s, making our solution unfeasible without operational lags. Clearly,
the application of a simple controller to guarantee the correct behavior under a certain property
is limited by many factors, such as the nature of the task and the characteristic of the agent.
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Chapter 7

TIME-DEPENDENT PROPERTIES

In the previous chapters, we introduced the concept of formal verification for neural networks
(FV). In particular, in Chap. 5 we described the general objective of an FV algorithm, providing
an intuition on the different approaches for this class of methods, while in Chap. 6 we moved
in the direction of the formal verification for Deep Reinforcement Learning (DRL), focusing on
the decision-making problem and introducing a novel approach to compute the violation rate,
an evaluation metric for the safety of DRL-based systems. However, previous methods focus on
the verification of safety properties that encode only input-output relations, and this presents
different limitations when applied in a DRL context: (i) the focus is only on local properties,
which means that the properties can describe only the current state of the system; (ii) it considers
only the immediate consequences of an action; (iii) it is based on single invocations of the DNN,
whereas DRL policies involve sequences of invocations and interactions with the environment;
and (iv) this encoding requires a high prior knowledge from the users, that must be aware of
the long term consequence of the past actions.

To overcome these limitations, a novel family of verification strategies has been developed
for the verification of long-term properties (or time-dependent properties) [Amir et al., 2021;
Eliyahu et al., 2021]. In our work, we propose to extend these approaches to a robotic DRL
context, where sequences of actions and interactions with the environment characterize the
agent’s behavior (in Part III, we show a concrete case study). We combined FV approaches
with different methodologies from the model-checking community, subdividing the properties
into two classes of problems: safety and liveness. These two classes are sufficiently expressive
to encode a large variety of requirements in many settings and, specifically for the primary goal
of this dissertation, for DRL systems [Baier and Katoen, 2008].

• A safety property encodes that nothing bad happens in the system [Eliyahu et al., 2021],
Fig. 7.1 shows an example; more formally a safety property is described by a function B(x)
that returns true if x is a bad state. For example, in the surgical robot case studies, we
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analyzed in this thesis, a bad state can be a configuration where the end effector touches
the patient. Given B(x), a violating run of the system is a finite sequence of states x0, ..., xn
such that, starting from an initial state x0, ends up in a state xn such that B(xn) is true.
Following this definition, the system of Fig. 7.1(a) is unsafe because the sequence 1, 2, 4, B
ends up in the unsafe state B.

• A liveness property encodes that good thing eventually happen [Eliyahu et al., 2021].
Fig. 7.1 shows an example; more formally, a liveness property is described by a func-
tion G(x) that returns true if x is a good state, i.e., a state where the system is supposed
to be at some point in the execution. Following the previous example of the surgical robot,
a good state can be where the robot completed the task. Finally, given G(x), a violating
run of the system is a sequence of states x0, ..., xn such that the sequence is a loop and
does not exist a state xi of the sequence where G(x) is true. Following this definition, the
system of Fig. 7.1(b) is unsafe because the sequence 1, 2, 3, 4, 2, 3, 4, ... ends up in a loop
without reaching the state B.

(a) Safety Property (b) Liveness Property

Figure 7.1: Examples of violated safety and liveness properties.

In the next sections, we show how to encode these kinds of problems in a formal fashion and
how to translate this encoding into a formal verification query for a standard formal verifier.
In our examples, we rely on Marabou [Katz et al., 2019], but other tools can be used as a
backend. A crucial challenge to applying these approaches in a robotic context is related to
the nonlinearity of these systems. A multi-step verification tool inherits the limitations of an
optimization-based FV algorithm and can thus handle only linear constraints to describe the
relation between to states of the system (i.e., the transition model). Apparently, this limitation
prevents to merge of these two worlds (i.e., robotics and multi-step verification); however, in our
work, we introduce two strategies to overcome these limitations: the overapproximation of the
constraints and the design-for-verification approach. In this chapter, we provide a theoretical
analysis of the approach while in Part III, we exploit this method in a real-world robotic problem,
showing some practical examples of formal encoding. To summarize, in this chapter, we made
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the following contribution in the direction of allowing the adoption of the multi-step formal
verification in a robotic context: (i) we provide a formalism to encode multi-step requirements
in a reactive robotic system; (ii) we show how to relax the requirements, and how these linear
properties can be adapted in a robotic context; and (iii) we explain how the results of the analysis
can be used in DRL contexts.

7.1 ENCODING

Before defining the formal encoding of the time-dependent properties, which we refer to as model
checker representation, it is important to clarify a concept: this encoding is slightly different
with respect to the standard definition of a formal verification problem. A state in this context
is not the same state that constitutes the input of the DNN but can be a single state, an action,
a state-action pair, or even a combination of these elements. For example, if the requirement
is not to repeat the same action k times, a state for the model checker represents a counter
for the number of repetitions. Notice that there is always a strict relation between the model
checker and the formal verification representations because a fast translation is required to run
the query on a formal verification tool (e.g., Marabou [Katz et al., 2019]).

A model checking query for a time-dependent property requires a tuple ⟨S, I, T, p⟩, where:

• S is the state space for the system. The state space is strongly related to the properties
we aim to verify. For example, in some cases, it overlaps the state of the underlying MPD,
or in others, it encodes a pair action-state.

• I is a predicate to represent the initial states, I(x) returns true if x ∈ S and x is an initial
state. This is an important requirement because, for example, if a sequence of states that
ends up in an unsafe state is only reachable starting from a state which is not initial, the
system can be considered safe.

• T is the transition relation function. Notice that this is different from a transition model
of an MDP. T (x, x′) is a function that specifies if x′ can be reached from x′ in a single step
in the system.

• p is the property to verify, this predicate contains the requirements for the analysis, e.g.,
B(x) for a safety property and G(x) for a liveness property.

Finding a violation for a time-dependent property is the task of deciding if a sequence of
action that respects some requirements exists. More formally, in the case of a safety property :

∃x1, ..., xk . I(x1) ∧ (
k−1∧
i=1

T (xi, x
′
i+1)) ∧ (

k∨
i=1

B(xi)) (7.1)
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and, in the case of a liveness property :

∃x1, ..., xk . I(x1) ∧ (

k−1∧
i=1

T (xi, x
′
i+1)) ∧ (

k∧
i=1

¬G(xi)) ∧ (

k−1∨
i=1

xk = xi) (7.2)

Eq.7.1 and Eq.7.2 encode the model checking problem. Before the formal verification step, it
is necessary to convert this formulation into the tuple ⟨N,P,Q⟩ that represents the verification
query and exploit a solver-based verification tool. The idea is to duplicate the DNN to generate
a new larger DNN composed of k copies of the original one (where k is the number of steps in
the future we are considering for the verification query). Each input of the DNN is a variable,
and the relation between the output and the next state, described by the relation function
T (x, x′), is encoded using an implication constraint (→), typically supported by state of the art
SMT-solvers.

Figure 7.2: Generation of the larger neural network for the time-dependent verification. The original
neural network has 1 input and 2 and is represented in the blue box (N). The larger network consists of
4 copies of the original one and is represented in the black box (N

′
).

Fig 7.2 provides a toy example for a safety property. Suppose we have a reactive system
with a counter that constitutes the state, and only two actions are allowed: (i) increment the
counter and (ii) decrement the counter. The controller is encoded with a DNN with 1 input
and 2 outputs, and the initial state is when the counter is set to 0. The safety property is to
avoid a state where the counter is greater than 3. Supposing that the action represented by y0
increments the counter, and the action represented by y1 decrements the value, the controller
always selects the node with the highest value. We also suppose to set the limit for the number
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of steps to analyze k = 4. The model-checking query can be formalized as follows:

∃x1, x2, x3, x4 . I(x1) ∧ (

3∧
i=1

T (xi, x
′
i+1)) ∧ (

4∨
i=1

B(xi)) (7.3)

where I(x) returns true if the counter is 0, T (x, x
′
) return true in two cases: (i) if the action is

increment counter then x
′
= x+1 or (ii) if the action is decrement counter then x

′
= x−1, and

B(x) returns true if the counter is greater than 2. In such configuration, the formal verification
query ⟨N ′

, P,Q⟩, where N i consists in k copies of the original network N (Fig 7.2), is in the
following form:

P : (x0 = 0) ∧ (y0 > 0 → x1 = x0 + 1) ∧ (y2 > y3 → x2 = x1 + 1) ∧ (y4 > y5 → x3 = x2 + 1)

Q : (y6 > y7)

this query can be directly run on a verification engine, if the FV process return SAT it means
that a counterexample has been found, i.e., a specific sequence of input/output that violates
the property exists (in the toy example, it is possible that the counter is greater than 3). In
contrast, if the FV tool return UNSAT, such configuration does not exist, and then the property
is respected. This statement is true if we assume that T (x, x

′
) describes exactly the transition

function. In general, this function is difficult to obtain, the idea is to use an abstraction;
T (x, x

′
) can be an over-approximation of the actual transition function. Using an abstraction,

the method is still sound but loses its completeness. This means that if the process return
UNSAT the system is probably safe; however if it returns SAT the configuration may not be
feasible and must be tested. Crucially, for safety-critical systems, a conservative approach is
preferable; therefore, in our experiments (exhaustively described in Part III), we always look for
UNSAT configurations. Finally, several techniques and additions derived from the model-checking
community have been developed to improve performance and scalability when applied to real-
world applications. Among the others, we mention the k-induction, invariant inference, and
abstraction. We refer to the work of Amir et al. [2021] for more details.

7.2 APPLICATION TO ROBOTICS

In the introduction of this chapter, we introduced the main challenge for the application of time-
dependent FV in a robotic context: the non-linearity of the systems. To exploit the multi-step
verification, the first step is to encode the transition between the states of the system through a
safety property in the standard form (e.g., Eq. 7.1 or Eq. 7.2). However, to be verified with an
optimization-based method, the constraints must be linear (or piece-wise linear)1. While this is

1This limitation is inherited from the verification framework used as backend, which means that our method
can take advantage of future development in this direction.
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not a hard requirement in an abstract context (e.g., chess or videogame), it becomes crucial in
a real-world robotic context, where the dynamic is typically non-linear, making the codification
of the transition model for the FV queries untractable. In order to solve this problem, we
propose to exploit an abstraction of the transition model. The intuition is to introduce a linear
relaxation of the transition model to “overapproximate” the set of states that can be reached
from an initial state with only one step. Exploiting this technique, we can encode the complex
non-linear behavior of the robot. However, the verification becomes non-complete, which means
that if the FV process says that the robot is safe, this is formally true, but if a counterexample
is found, it can be a false positive (i.e., it does not respect the actual non-linear transition
model). In general, given the conservative nature of formal verification, we argue that it can be
considered a good result; in fact, the algorithm never returns safe if the robot does not respect the
requirements, which is the most dangerous scenario. On the other hand, the abstraction should
be a good approximation of the actual transition model. Otherwise, the algorithm is always
prone to return false-positive counterexamples (e.g., in the borderline case, the transition model
allows any transition, resulting in a always usanfe answer).

While completely avoiding the linear relaxation of the transition model is practically not
possible in a robotic context, different techniques can be exploited to mitigate the previously
discussed overhead. A possible option is to exploit a linearization technique (e.g., first-order
Taylor expansion) to generate a piece-wise approximation of the transition model to locally set
an upper and a lower bound to the transition function. Although this approach can limit the
introduced overhead, it intrinsically requires an approximation and can not completely solve
the problem; nevertheless, this approach should be further investigated, and we plan to work
on this topic as a future direction for this work. Here, we propose an alternative solution that
can drastically reduce the number of relaxation required, the “design-for-verification” approach.
The intuition is to directly model the neural network controller to guarantee linear constraints
between consecutive steps. For example, by fixing the linear velocity of a robot and supposing
to have as input its coordinate, we obtain a linear constraint between the state at time t and
the state at time t+1 for a single movement action (i.e., if the robot selects the action forward,
the x coordinate will be increased by the linear velocity multiplied by the decision frequency).
However, This approach does not allow for complete avoidance of abstraction but can help to
reduce the number of non-linear transitions. In the next chapter, we will provide a concrete
example where this approach allows us to find formally safe models before deployment.

7.3 EXPLOITING THE VERIFICATION

Now that we presented a method to formally verify time-dependent properties, the following
step is to understand how to exploit these results to improve the reliability of the trained DRL
policies. The primary motivation is shared with the standard FV methods, which we already
discussed in Chap. 5, and it is to guarantee some requirements specified by expert users before
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the deployment. However, as we discussed in Chap. 6, in a DRL context, formally guaranteeing
that a policy never violates the properties is a strict requirement, especially because the multi-
step verification is based on the SAT solver methods where the answer is always binary (SAT or
UNSAT) and a violation rate can not be easily computed.

An available option is to exploit the counterexamples found during the verification process
to enrich the memory buffer and improve the training performance from a safety perspective.
However, (i) this approach can not be applied an on-policy algorithm (e.g., REINFORCE Sutton
et al. [1999] and its derivations) because the memory buffer can contain only experiences collected
with the current policy (a fundamental condition for the policy gradient theorem, consult Chap. 2
for details); and, (ii) in the case of an off-policy algorithm (e.g., DQN Mnih et al. [2013]) where
we are allowed to manipulate the memory buffer, there are no guarantees about the policy
improvements.

Nevertheless, from our experiments, and recalling the theoretical results of Chap. 6, we found
that a high cumulative reward does not trivially imply respect for the safety constraints, and
thus we believe that the result of a more formal analysis should be exploited to complement the
evaluation phase before the deployment. In this direction, we propose two alternative methods
to exploit the FV that do not directly affect the training loop.

1. Termination Criteria: the idea is to use this formal verification process to decide when
the training can be considered terminated. The idea is to perform an FV step when the
policy provides good performance (e.g, reward above a given value) and, if the FV returns
UNSAT (i.e., the policy is safe), the training can be concluded. Otherwise, the policy must
be improved and the loop continues.

2. Model Selection: the idea is to collect a set of models from the training loop, ideally from
the final stages of the training, and use the FV to filter the unsafe models to obtain the
policies that: (a) obtained good performance in training (e.g., reward-wise); and (b) does
not violate the safety requirements (i.e., the verification returns SAT).

Although both these approaches can be helpful and do not imply theoretical problems when
applied to a DRL loop, from our experiments, we noticed that the model selection has more
impact. The reason is that using this analysis as termination criteria requires temporary pausing
the training process, which introduces significant overhead and requires multiple invocations of
the verification tool (e.g., Marabou Katz et al. [2019]). Crucially, this can not be done in
parallel to the training. Model selection, in contrast, does not interfere with the training. Given
some standard criteria (for example, the reward should be above a given threshold), all the
successful models can be stored. Each of them requires only a single invocation of the verifier
to filter the safe and unsafe policies. Therefore a good solution is to proceed with a multi-step
pipeline: (i) perform the training until convergence and saving a set of good models; (ii) perform
the model selection on these models using the formal verification, and (iii) among the survived
models, perform an additional empirical testing phase behavioral oriented, to find the best policy
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between the models that we found to be provably safe. In Part III) of this thesis, we show how
this approach is useful in a real-world robotic problem, providing a set of well-performing and
provably safe models.
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Application to Robotics

97





Chapter 8

THE MAPLESS NAVIGATION CASE STUDY

In this chapter, we apply the main contributions of this thesis to a real-world robotic case
study: the Mapless Navigation problem. The objective of this chapter is to show a concrete
example of how to generate agents that respect a set of given requirements, are provably safe,
and at the same time, obtain excellent results in solving the task. In this section, we make
the following contributions: (i) we present and analyze a real-world problem, formulating the
safety and behavioral requirements; (ii) exploiting the method proposed in Chap. 4, we show
how to perform constrained training, injecting domain expert knowledge to enforce behavioral
requirements in the generated policy; and (iii) we perform a model selection phase, exploiting the
formal verification approaches proposed in Chap. 6 and Chap. 7, to filter the provably safe agents;
here we consider both the single-step verification and the time-dependent properties. We refer to
the requirements for the constrained training as soft constraints, which means that we tolerate
some deviations from these expected behaviors as long as they stay below a given threshold. In
contrast, we consider the requirements for the formal verification as hard constraints, which must
be formally proved with a verification algorithm before the deployment. Finally, we show our
results, demonstrating that, following the pipeline presented in this dissertation, the resulting
agents are safe and reliable without compromising the performances. Crucially, we perform
our experiments on a realistic simulator (developed with the Unity3D engine and the Robotic
Operating System1) before the deployment of the actual robotic platform.

8.1 PROBLEM DEFINITION AND REQUIREMENTS

We explain and demonstrate our proposed techniques applying our pipeline to the mapless nav-
igation problem, in which a robot is required to reach a given target efficiently while avoiding
collision with obstacles. Unlike in classical planning, the robot is not given a map of its surround-

1Refer to Chapter 2 for details about the simulation.
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Figure 8.1: The Robotis Turtlebot3 platform.

ing environment and can rely only on local observations (e.g., from lidar sensors or cameras).
Thus, a successful agent needs to be able to adjust its strategy dynamically as it progresses to-
ward its target. Mapless navigation has been studied extensively and is considered particularly
challenging to solve. Specifically, the local nature of the problem renders learning a successful
policy extremely challenging and hard to solve using classical algorithms [Pfeiffer et al., 2018].
Prior work has shown DRL approaches to be among the most successful for tackling this task,
often outperforming hand-crafted algorithms [Marchesini and Farinelli, 2020].

As a platform for our study, we relied on the Robotis Turtlebot 3 platform (Turtlebot, for
short; see Fig. 8.1), which is widely used in the community [Nandkumar et al., 2021; Amsters
and Slaets, 2019]. The Turtlebot is capable of horizontal navigation and is equipped with
lidar sensors for detecting nearby obstacles. In order to train DRL policies for controlling the
Turtlebot, we built a simulator based on the Unity3D engine [Juliani et al., 2018] (Fig. 8.2
shows some screenshots of the simulator). Unity3D is compatible with the Robotic Operating
System (ROS) [Quigley et al., 2009] and allows a fast transfer to the actual platform (sim-to-
real [Zhao et al., 2020]). We used a hybrid reward function, which includes a discrete component
for the terminal states (“collision”, or “reached target”), and a continuous component for the
non-terminal states. Formally:

Rt =

{
±1 terminal states

(distt−1 − distt) · η − β otherwise
(8.1)

Where distk is the distance from the target at time k; η is a normalization factor; and β is
a penalty, intended to encourage the robot to reach the target quickly (in our experiments, we
empirically set η = 3 and β = 0.001). Additionally, in terminal states, we increase the reward
by 1 if the target is reached, or decrease it by 1 in case of collision. For our DNN topology,
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(a) Unity3D engine

(b) basic environment (c) additional environment

Figure 8.2: The Unity3D game engine with some examples of our simulation environments.

we used an architecture that was shown to be successful in a similar setting [Marchesini and
Farinelli, 2020]:

• An input layer with nine neurons. These include seven neurons representing the Turtle-
bot’s lidar readings. The additional, non-lidar inputs include one neuron representing the
relative angle between the robot and the target, and one neuron representing The robot’s
distance from the target. A scheme of the inputs appears in Fig. 8.3a.

• Two subsequent fully-connected layers, each consisting of 16 neurons, followed by a ReLU
activation layer. In Marchesini and Farinelli [2020] the authors focused on a DNN with a
total of 64 hidden neurons. For our experiments, we trained DNNs of various sizes and
eventually focused on DNNs with a total of 32 hidden neurons, as they achieved similar
accuracy and allowed us to expedite verification.

• An output layer with three neurons, each corresponding to a different (discrete) action
that the agent can choose to execute in the following step: move FORWARD, turn LEFT,
or turn RIGHT. It has been shown that discrete controllers achieve excellent performance
in robotic navigation, often outperforming the continuous controllers in a large variety of
tasks [Marchesini and Farinelli, 2020].
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(a) The DRL controller
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Figure 8.3: (a) The DRL controller used for the robot in the case study; the DRL model has nine input
neurons: seven lidar sensor readings (blue), one input indicating the relative angle (orange) between the
robot and the target, and one input indicating the distance (green) between the robot and the target. (b)
The average success rates of models trained by each of the three DRL training algorithms, per training
episode. The plot also indicates the standard deviation for each algorithm.

Using some of the training algorithms mentioned in Chap 2, we trained a collection of DRL
agents to solve the Turtlebot mapless navigation problem. We ran a stochastic training process,
and therefore we obtained varied agents; of these, we only kept those that achieved a success
rate of at least 96% during training, where “success” means that the robot reached its target
without colliding with walls or obstacles. A total of 780 models were selected, consisting of 260
models per each of the three training algorithms. More specifically, for each algorithm, all 260
models were generated from 52 random seeds. Each seed gave rise to a family of 5 models, where
the individual family members differ in the number of training episodes used for training them.
Fig. 8.3b shows the trained models’ average success rate, for each algorithm used. We note that
PPO was generally the fastest to achieve high accuracy. However, all three training algorithms
successfully produced highly accurate agents.

Soft Constraints - Behavioural Requirements Analyzing the trained agents further, we
observed that even DRL agents that achieved a high success rate may demonstrate highly
undesirable behavior in different scenarios. One such behavior is a sequence of back-and-forth
turns, that causes the robot to waste time and energy. Another undesirable behavior is when
the agent makes a lengthy sequence of right turns instead of a much shorter sequence of left
turns (or vice versa), wasting, again, time and energy. A third undesirable behavior that we
observed is that the agent might decide not to move forward toward a target that is directly
ahead, even when the path is clear. Our goal was thus to use our approach to remove these
undesirable behaviors.
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Figure 8.4: A visualization of the three scenarios. Figure (b) refers to the Left turns part only. ’Wait
For’ and ’Blocked’ in the state-blob indicates events that the scenario waits for or blocks, respectively.
The events SBP MoveForward, SBP TurnLeft and SBP TurnRight are represented respectively, by FOR-
WARD, LEFT, RIGHT.

Hard Constraints - Safety Requirements All of our trained models achieved very high
success rates, and so, at face value, there was no reason to favor one over the other. However, as
we show next, a verification-based approach can expose multiple subtle differences between them.
As our evaluation criteria, we define some fundamental properties of interest that derive from
the main goals of the robotic controller: (i) reaching the target; and (ii) avoiding collision with
obstacles. Using verification, we use these criteria to identify models which may fail to fulfill
their goals, i.e., because they collide with various obstacles, are overly conservative, or may
enter infinite loops without reaching the target. Here, we remark that all the selected policies
never collided during an empirical evaluation analysis, however, some of them are susceptible to
specific adversarial corner cases (refer to Chap. 5 for more details about this concept).

8.2 SCENARIO BASED CONSTRAINED DRL

Following the approach presented in Chap. 4, we integrated a scenario-based program into the
DRL training process, in order to remove the aforementioned undesirable behaviors. More con-
cretely, we created specific scenarios to rule out each of the three aforementioned undesirable
behaviors we observed. To accomplish this, we created a mapping between each possible ac-
tion at ∈ {Move FORWARD, Turn LEFT, Turn RIGHT} of the DRL agent and a dedicated event
eat ∈ {SBP MoveForward, SBP TurnLeft, SBP TurnRight} within the scenario-based program.
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These events allow the various scenarios to keep track of (and react to) the agent’s actions. We
refer to these eat events as external events, indicating that they can only be triggered when
requested from outside the SB program proper. By convention, we assume that after each trig-
gering of a single, external event, the scenario-based program executes a sequence of internal
events (a super-step [Yerushalmi et al., 2022]), until it returns to a steady state and then waits
for another external event. The novelty of our approach is in the strategy by which we use sce-
narios to affect the training process. Specifically, we define the DRL cost function to correspond
to violations of scenario constraints by the DRL agent. Whenever the agent selects an action
that is mapped to a blocked SBP event, we increase the cost. This approach is described in
detail in Chap 4, and constitutes a general and scalable method for injecting explicit constraints
(expressed, e.g., by scenarios) directly into the policy optimization process.

Considering our Turtlebot mapless navigation case study, we created scenarios for discour-
aging the three undesirable behaviors we had previously observed. The scenarios are visualized
in Fig. 8.4, using an amalgamation of Statecharts and SBP graphical notation languages [Harel,
1987; Marron et al., 2018]. The Python implementation of the three scenarios used in this paper
is shown below: the code for avoid back-and-forth rotation appears in Listing 8.1, the code for
avoid turns larger than 180◦ appears in Listing 8.2, and the code for avoid turning when clear
appears in Listing. 8.3.

def SBP_avoidBackAndForthRotation ():

blockedEvList = []

waitforEvList = [BEvent("SBP_MoveForward"),

BEvent("SBP_TurnLeft"),

BEvent("SBP_TurnRight")]

while True:

lastEv = yield {waitFor: waitforEvList , block: blockedEvList}

if lastEv != BEvent("SBP_TurnLeft")

and lastEv != BEvent("SBP_TurnRight"):

blockedEvList = []

else:

blocked_ev = BEvent("SBP_TurnRight")

if lastEv == BEvent("SBP_TurnLeft")

else BEvent("SBP_TurnLeft")

# Blocking!

blockedEvList.append(blocked_ev)

Listing 8.1: The Python implementation of scenario avoid back-and-forth rotation. The code
waits for any of the possible events: SBP MoveForward, SBP TurnLeft and SBP TurnRight.
Upon receiving SBP TurnLeft, it blocks SBP TurnRight, and upon receiving SBP TurnRight, it
blocks SBP TurnLeft. Upon receiving SBP MoveForward, it clears any blocking.

def SBP_avoid_k_consecuative_turns ():

k = 7

counter = 0

prevEv = None
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blockedEvList = []

waitforEvList = [BEvent("SBP_MoveForward"), BEvent("SBP_TurnLeft"), \\

BEvent("SBP_TurnRight")]

while True:

lastEv = yield {waitFor: waitforEvList , block: blockedEvList}

if prevEv is None or lastEv == BEvent("SBP_MoveForward") \\

or prevEv != lastEv:

prevEv = lastEv

counter = 0

blockedEvList = []

else:

if counter == k - 1:

# Blocking!

blockedEvList.append(lastEv)

else:

counter += 1

Listing 8.2: The Python implementation of a scenario that blocks turning in the same direction
more than k consecutive times. Each turn action rotates the robot by 30◦, and so we set k to
be 7.

def SBP_avoid_turning_when_clear ():

blockedEvList = []

waitforEvList = [BEvent("SBP_MoveForward"), BEvent("SBP_TurnLeft"), \\

BEvent("SBP_TurnRight")]

while True:

lastEv = yield {waitFor: waitforEvList , block: blockedEvList}

state = lastEv.data[’state’]

if state [3] > MINIMAL_FWD_CLEARANCE and \\

state [2] > MINIMAL_CLEARANCE and \\

state [4] > MINIMAL_CLEARANCE and \\

abs(FWD_DIR - state [-2]) < FWD_DIR_TOLERANCE:

blockedEvList.extend ([ BEvent("SBP_TurnLeft"), \\

BEvent("SBP_TurnRight")])

else:

blockedEvList = []

Listing 8.3: The Python implementation of a scenario that blocks turning if the target is straight
ahead and the path toward it is clear. The event carries data with it, which includes readings
from the seven lidar sensors (with state[3] being the front-heading sensor. State[-2] is the direc-
tion to the target).

1. Scenario avoid back-and-forth rotation (Fig. 8.4a) seeks to prevent in-place, back-and-forth
turns by the robot, to conserve time and energy.

2. Scenario avoid turns larger than 180◦ (Fig. 8.4b) seeks to prevent left turns in angles that
are greater than 180◦, to conserve time and energy (the right-turn case is symmetrical).
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A forward slash indicates an action that is performed when a transition is taken; square
brackets denote guard conditions, and $k and $leftCounter are variables. Each turn rotates
the robot by 30◦, and so we set k = 7.

3. Scenario avoid turning when clear (Fig. 8.4c) seeks to force the agent to move towards the
target when it is ahead, and there is a clear path to it. This is performed by blocking
any turn actions when this situation occurs. Triggered events carry data, which can be
referenced by guard conditions.

Evaluation Fig. 8.5 depicts a comparison between policies trained with a standard end-to-end
PPO [Schulman et al., 2017] (the baseline), and those trained using our constrained method with
the injection of rules. In Figs. 8.5(a) and 8.5(d), we show results of policies trained with just
avoid back-and-forth rotation added as a constraint. Fig. 8.5(a) shows that the success rate of
the baseline stabilizes at around 87%, while the success rate of our improved policies stabilizes
at around 95%. Fig. 8.5(d) then compares the frequency of undesired behavior occurrences
between the baseline, at about 13 per episode, and our policies, where the frequency diminishes
almost completely. Next, for Fig. 8.5(b) we show results of policies trained with all three of our
added rules; we note that the success rate for these policies stabilizes around 95%, compared
to 87% for the baseline. Finally, in Figs. 8.5(c), (e), and (f), we compare the frequency of the
occurrence of undesired behaviors between the baseline and the policies trained with all rules
active. Using the baseline, the frequency of the three behaviors is about 13, 3, and 17 per
episode. The undesired behaviors are removed almost completely for the policies trained with
our additional rules and method. We note that the undesired behavior addressed by the rule
avoid turns larger than 180◦ is quite rare in general; and so the statistics reported in Fig. 8.5(c)
were collected over the final 100 episodes of training.

The results clearly show that our method can train agents that respect the given constraints,
without damaging the main training objective — the success rate. Moreover, it also highlights
the scalability of our method, i.e., performing well when single or multiple rules are applied.
Reviewing Fig 8.5(b), comparing the baseline’s success rate with our method’s success rate
when all rules are applied together with all the optimizations presented in Chap. 4, shows a
clear advantage. Excitingly, our approach even led to an improved success rate, suggesting that
the contribution of expert knowledge can drive the training to better policies. This showcases
the importance of enabling expert-knowledge contributions, compared to end-to-end approaches
in the context of mapless navigation.

8.3 FORMAL VERIFICATION AND MODEL SELECTION

In this section, we discuss the safety requirements that we considered as hard-constraints for the
“verification-based model selection”. As discussed in the previous section we subdivided these
requirements based on the two main goals of the robotic controller: (i) reaching the target; and
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(ii) avoiding collisions. In addition, we consider an alternative way to use the model selection
and the formal verification to filter some desirable behaviors, we finally discuss our design for
verification approach.

Collision Avoidance Collision avoidance is a fundamental and ubiquitous safety property for
navigation agents Clarke et al. [2018]. In the context of Turtlebot, our goal is to check whether
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Figure 8.5: A comparison between the baseline policies to policies trained using our approach. The black
dotted line states the threshold (dk) we considered for the kth rule.
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Figure 8.6: Example of a single-step collision. The robot is not blocked on its right and can avoid the
obstacle by turning (panel A), but it still chooses to move forward and hence collides (panel B).

there exists a setting in which the robot is facing an obstacle and chooses to move straight ahead
— even though it has at least one other viable option, in the form of a direction in which it is
not blocked. In that situation, it is clearly preferable to choose turning LEFT or RIGHT instead
of choosing to move FORWARD and colliding. See Fig. 8.6 for an illustration.

Given that turning LEFT or RIGHT produces an in-place rotation (i.e., the robot does not
change its position), the only action which can cause a collision is FORWARD. In particular, a
collision can happen when an obstacle is directly in front of the robot, or slightly off to one side
(just outside the front lidar’s field of detection). More formally, we consider the safety property
“the robot does not collide at the next step”, with three different types of collisions:

• FORWARD COLLISION: the robot detects an obstacle straight ahead, but makes a single step
forward and collides with the obstacle.

• LEFT COLLISION: the robot detects an obstacle up ahead and slightly shifted to the left
(using the lidar beam that is 30° to the left of the one pointing straight ahead), but makes
a single step forward and collides with the obstacle. The shape of the robot is such that
in this setting, a collision is unavoidable.

• RIGHT COLLISION: the robot detects an obstacle up ahead and slightly shifted to the right,
but makes a single step forward and collides with the obstacle.

Recall that in mapless navigation, all observations are local — the robot has no sense of
the global map, and can encounter any possible obstacle configuration (i.e., any possible sensor
reading). Thus, in encoding these properties, we considered a single invocation of the DRL
agent’s DNN, with the following constraints:
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1. All the sensors that are not in the direction of the obstacle receive a lidar input indicating
that the robot can move either LEFT or RIGHT without risk of collision. This is encoded
by lower-bounding these inputs.

2. The single input in the direction of the obstacle is upper-bounded by a value matching the
representation of an obstacle, close enough to the robot so that it will collide if it makes
a move FORWARD.

3. The input representing the distance to the target is lower-bounded, indicating that the
target has not yet been reached (encouraging the agent to make a move).

The exact encoding of these properties is based on the physical characteristics of the robot
and the lidar sensors.

Infinite Loops Whereas collision avoidance is the natural safety property to verify in mapless
navigation controllers, checking that progress is eventually made towards the target is the natural
liveness property. Unfortunately, this property is difficult to formulate due to the absence of a
complete map. Instead, we settle for a weaker proxy and focus on verifying that the robot does
not enter infinite loops (which would prevent it from ever reaching the target).

Unlike the case of collision avoidance, where a single step of the DRL agent could constitute a
violation, here we need to reason about multiple consecutive invocations of the DRL controller,
in order to identify infinite loops. This, again, is difficult to encode due to the absence of a
global map, and so we focus on in-place loops: infinite sequences of steps in which the robot
turns LEFT and RIGHT, but without ever moving FORWARD, thus maintaining its current location
ad infinitum. Our queries for identifying in-place loops encode that: (i) the robot does not reach
the target in the first step; (ii) in the following k steps, the robot never moves FORWARD, i.e., it
only performs turns; and (iii) the robot returns to an already-visited configuration, guaranteeing
that the same behavior will be repeated by our deterministic agents. The various queries differ
in the choice of k, as well as in the sequence of turns performed by the robot. Specifically, we
encode queries for identifying the following kinds of loops:

• ALTERNATING LOOP: a loop where the robot performs an infinite sequence of ⟨ LEFT, RIGHT,
LEFT, RIGHT, LEFT, ...⟩ moves. A query for identifying this loop encodes k = 2 consecutive
invocations of the DRL agent, after which the robot’s sensors will again report the exact
same reading, leading to an infinite loop. An example appears in Fig. 8.7. The encoding
uses the “sliding window” principle, on which we elaborate later.

• LEFT CYCLE, RIGHT CYCLE: loops in which the robot performs an infinite sequence of
⟨LEFT, LEFT, LEFT, . . .⟩ or ⟨RIGHT, RIGHT, RIGHT, . . .⟩ operations. Because the Turtlebot
turns at a 30° angle, this loop is encoded as a sequence of k = 360°/30° = 12 consecutive
invocations of the DRL agent’s DNN, all of which produce the same turning action (either
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LEFT or RIGHT). Using the sliding window principle guarantees that the robot returns
to the same exact configuration after performing this loop, indicating that it will never
perform any other action. We also note that all the loop-identification queries include a
condition for ensuring that the robot is not blocked from all directions. Consequently, any
loops that are discovered demonstrate a clearly suboptimal behavior. An example appears
in Fig. 8.8.

Figure 8.7: An example of a simulated Turtlebot entering a 2-step loop. The white and red dashed lines
represent the lidar beams (white indicates “clear”, and red indicates that an obstacle is detected). The
yellow square represents the target position; the blue arrows indicate rotation. In the first row, from left
to right, the Turtlebot is stuck in an infinite loop, alternating between right and left turns. Given the
deterministic nature of the system, the agent will continue to select these same actions, ad infinitum.
In the second row, from left to right, we present an almost identical configuration, but with an obstacle
located 30° to the robot’s left (circled in blue). The presence of the obstacle changes the input to the
DNN, and allows the Turtlebot to avoid entering the infinite loop; instead, it successfully navigates to
the target.

Specific Behavior Profiles. In our experiments, we noticed that the safety policies, i.e., the
ones that do not cause the robot to collide displayed a wide spectrum of different behaviors
when navigating to the target. These differences occurred not only between policies that were
trained by different algorithms, but also between policies trained by the same reward strategy,
indicating that these differences are, at least partially, due to the stochastic realization of the
DRL training process.

Specifically, we noticed high variability in the length of the routes selected by the DRL policy
in order to reach the given target: while some policies demonstrated short, efficient, paths that
passed very close to obstacles, other policies demonstrated a much more “conservative” behavior,
by selecting longer paths, and avoiding getting close to obstacles (an example appears in Fig. 8.9).
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Figure 8.8: A 12-step trajectory of an infinite RIGHT CYCLE. The white and red dashed lines represent
the lidar scan (white indicates a clear path; red indicates an obstacle is present), while the yellow square
represents the target position towards which the robot navigates. The yellow dotted line represents the
angular step the robot performs in the first six iterations. Given that the spacing between each lidar scan
is the same as the angular step size (30°), at each time step it is possible to encode the sliding window
for the state. The trajectory of a LEFT CYCLE is symmetric.

Thus, we used our verification-driven approach to quantify how “conservative” the learned
DRL agent is in the mapless navigation setting. Intuitively, a highly conservative policy will
keep a significant safety margin from obstacles (possibly taking a longer route to reach its
destination), whereas a “braver” and less conservative controller would risk venturing closer to
obstacles. In the case of Turtlebot, the preferable DRL policies are the ones that guarantee the
robot’s safety (with respect to collision avoidance), and demonstrate a high level of bravery —
as these policies tend to take shorter, optimized paths (see path A in Fig. 8.9), which lead to
reduced energy consumption over the entire trail.

Bravery assessment is performed by encoding verification queries that identify situations in
which the Turtlebot can move forward, but its control policy chooses not to. Specifically, we
encode single invocations of the DRL model, in which we bound the lidar inputs to indicate
that the Turtlebot is sufficiently distant from any obstacle and can safely move forward. We
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Figure 8.9: Comparing paths selected by policies with different bravery levels. Path A takes the Turtlebot
close to the obstacle (red area) and is the shortest. Path B maintains a greater distance from the obstacle
(light red area) and is consequently longer. Finally, path C maintains such a significant distance from
the obstacle (white area) that it is unable to reach the target.

then use the verifier to determine whether, in this setting, a FORWARD output is possible. By
altering and adjusting the bounds on the central lidar sensor, we control how far away the robot
perceives the obstacle to be. If we limit this distance to large values and the policy will still not
move FORWARD, it is considered conservative; otherwise, it is considered brave. By conducting a
binary search over these bounds Amir et al. [2021], we can identify the shortest distance from an
obstacle, for which the policy orders the robot to move FORWARD, and this value’s inverse serves
as a bravery score for that policy.

Design for Verification: Sliding Windows A significant challenge that we faced in encod-
ing our verification properties, especially those that pertain to multiple consecutive invocations
of the DRL policy, had to do with the local nature of the sensor readings that serve as input to
the DNN. Specifically, if the robot is in some initial configuration that leads to a sensor input x,
and then chooses to move forward reaching a successor configuration in which the sensor input
is x′, some connection between x and x′ must be expressed as part of the verification query (i.e.,
nearby obstacles that exist in x cannot suddenly vanish in x′). In the absence of a global map,
this is difficult to enforce.

In order to circumvent this difficulty, we used the sliding window principle, which has proven
quite useful in similar settings Eliyahu et al. [2021]; Amir et al. [2021]. Intuitively, the idea is
to focus on scenarios where the connections between x and x′ are particularly straightforward
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to encode — in fact, most of the sensor information that appeared in x also appears in x′. This
approach allows us to encode multistep queries, and is also beneficial in terms of performance:
typically, adding sliding-window constraints reduces the search space explored by the verifier,
and expedites solving the query. In the Turtlebot setting, this is achieved by selecting a robot
configuration in which the angle between two neighboring lidar sensors is identical to the turning
angle of the robot (in our case, 30°). This guarantees, for example, that if the central lidar sensor
observes an obstacle at a distance d and the robot chooses to turn RIGHT, then at the next step,
the lidar sensor just to the left of the central sensor must detect the same obstacle, at the same
distance d. More generally, if at time-step t the 7 lidar readings (from left to right) are ⟨l1, . . . , l7⟩
and the robot turns RIGHT, then at time-step t + 1 the 7 readings are ⟨l2, l3, . . . , l7, l8⟩, where
only l8 is a new reading. The case for a LEFT turn is symmetrical. An illustration appears in
Fig. 8.7. By placing these constraints on consecutive states encountered by the robot, we were
able to encode complex properties that involve multiple time-steps, e.g., as in the case of infinite
loop properties discussed previously.

8.4 RESULTS

Next, we ran verification queries with the aforementioned properties, in order to assess the
quality of our trained DRL policies. The results are reported below. In many cases, we discovered
configurations in which the policies would cause the robot to collide or enter infinite loops. All
verification queries ran on a distributed cluster of HP EliteDesk machines, running at 3.00 GHz,
and with a 32 GB memory. We used the sound and complete Marabou verification engine Katz
et al. [2019] as our backend verifier (although other verification engines could be used, as well).
The Marabou engine supports DNNs with ReLU layers, max-pooling, convolution, absolute
value, and sign layers; and also supports sigmoids and softmax constraints.

Model Selection In this set of experiments, we used verification to assess our trained models.
Specifically, we used each of the three training algorithms (DDQN, Reinforce, PPO) to train 260
models, creating a total of 780 models. For each of these, we verified six properties of interest:
three collision properties (FORWARD COLLISION, LEFT COLLISION, RIGHT COLLISION), and three
loop properties (ALTERNATING LOOP, LEFT CYCLE, RIGHT CYCLE). This gives a total of 4680
verification queries. We ran all queries with a TIMEOUT value of 12 hours and a MEMOUT limit of
2G; the results are summarized in Table 8.1. The single-step collision queries usually terminated
within seconds, and the 2-step queries encoding an ALTERNATING LOOP usually terminated within
minutes. The 12-step cycle queries, which are more complex, usually ran for a few hours. 9.6%
of all queries hit the TIMEOUT limit (all from the 12-step cycle category), and none of the queries
hit the MEMOUT limit.

Our results exposed various differences between the trained models. Specifically, of the 780
models checked, 752 (over 96%) violated at least one of the single-step collision properties.
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LEFT COLLISION FORWARD COLL. RIGHT COLL.

Algorithm SAT UNSAT SAT UNSAT SAT UNSAT

DDQN 259 1 248 12 258 2
Reinforce 255 5 254 6 252 8
PPO 196 64 197 63 207 53

ALTERNATING LOOP LEFT CYCLE RIGHT CYCLE INSTABILITY

Algorithm SAT UNSAT SAT UNSAT SAT UNSAT # alternations

DDQN 260 0 56 77 56 61 21
Reinforce 145 115 5 185 120 97 10
PPO 214 45 26 198 30 198 1

Table 8.1: Results of the policy verification queries. We verified six properties over each of the 260 models
trained per algorithm; SAT indicates that the property was violated, whereas UNSAT indicates that it held
(to reduce clutter, we omit TIMEOUT and FAIL results). The rightmost column reports the stability values
of the various training methods. We define a family of models to be unstable in the case where a property
holds in the family but ceases to hold in another model from the same family with a higher number of
training iterations. Intuitively, the model “forgot” a desirable property as training progressed.

These 752 collision-prone models include all 260 DDQN-trained models, 256 Reinforce models,
and 236 PPO models. Furthermore, when we conducted a model filtering process based on
all six properties (three collision types and three types of infinite loops), we discovered that
778 models out of the total of 780 (over 99.7%!) violated at least one property. The PPO
algorithm trained the only 2 models that passed our filtering process. Further analyzing the
results, we observed that PPO models tended to be safer than those trained by other algorithms:
they usually had the fewest violations per property. However, there are cases in which PPO
proved less successful. For example, our results indicate that PPO-trained models are more
prone to enter an ALTERNATING LOOP than those trained by Reinforce. Specifically, 214 (82.3%)
of the PPO models have been found to enter this undesired state, compared to 145 (55.8%)
of the Reinforce models. We also point out that, similar to the case with collision properties,
all DDQN models violated this property. Finally, when considering 12-step cycles (either LEFT
CYCLE or RIGHT CYCLE), 44.8% of the DDQN models entered such cycles, compared to 30.7%
of the Reinforce models, and just 12.4% of the PPO models. In computing these results, we
computed the fraction of violations (SAT queries) out of the number of queries that did not time
out or fail, and aggregated SAT results for both cycle directions. Interestingly, we observed a
bias toward violating a certain subcase of various properties in some cases. For example, in
the case of entering complete cycles — although 125 (out of 520) queries on Reinforce models
indicated that the agent might enter a cycle in either direction, in 96% of these violations the
agent entered a RIGHT CYCLE. This bias is not present in models trained by the other algorithms,
where the violations are roughly evenly divided between cycles in both directions.

We find that our results demonstrate that different “black-box” algorithms generalize very
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differently with respect to various properties. In our setting, PPO produces the safest models,
while DDQN tends to produce models with a higher number of violations. We note that this
does not necessarily indicate that PPO-trained models perform better but are more robust to
corner cases. Using our filtering mechanism, it is possible to select the safest models among the
available, seemingly equivalent candidates. Next, we used verification to compute the bravery
score of the various models. Using a binary search, we computed for each model the minimal
distance a dead-ahead obstacle needs to have for the robot to move forward. The search range
was [0.18, 1] meters, and the optimal values were computed up to a 0.01 precision. Almost all
binary searches terminated within minutes, and none of them hit the TIMEOUT threshold. By
first filtering the models based on their safe behavior, then by their bravery scores, we can find
the few models that are safe (do not collide), and not overly conservative. These models tend
to take efficient paths and may come close to an obstacle, but without crashing with it. We
also point out that over-conservativeness may significantly reduce the success rate in specific
scenarios, such as cases where the obstacle is close to the target. Specifically, of the only two
models that survived the first filtering stage, one is considerably more conservative than the
other. The braver model may move forward when the distance is slightly over 0.42 meters, while
the over-conservative model never moves forward in cases where a similar obstacle is closer than
0.88 meters.

Scenario 1 Scenario 2 Scenario 3

ALGO SAT UNSAT TIMEOUT SAT UNSAT TIMEOUT SAT UNSAT TIMEOUT

Baseline 60 0 0 51 0 9 60 0 0
SBP 22 38 0 0 41 19 9 34 17

Table 8.2: Results of the formal verification queries over a total of 120 trained DNNs, for each of the
three properties in question. The first row shows the results of the 60 baseline policies and the second
row shows the results of the 60 policies trained by our method, with all rules active.

Combining the Approaches As an additional means of proving the effectiveness of our
methods, we ran formal verification on the models trained with our constrained scenario-based
approach (SPB). To conduct a fair comparison, we selected only models that passed our success
cutoff value (85%). For each of these models, we ran three verification queries — each checking
whether the model violates a given property (SAT), or abides by it for all inputs (UNSAT). We
note that a verifier might also fail to terminate, due to TIMEOUT or MEMOUT errors. Each query
ran with a TIMEOUT value of 36 hours, and a MEMOUT value of 6 GB. Table 8.2 summarizes the
results of our experiments. These results show a significant change of behavior between DNNs
trained with the baseline algorithm and those trained by our method. Indeed, we see that the
latter policies much more often completely abide by the specific rules, and are consequently far
more reliable.
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Chapter 9

CONCLUSION AND FUTURE DIRECTION

This thesis presented a set of methodologies that combines training and verification to generate
safe, predictable, and trustworthy agents through a Safe Deep Reinforcement Learning process.
In this conclusive chapter, we recap our contributions and discuss the possible future research
directions.

Constrained DRL Deep Reinforcement learning approaches rely on a simple paradigm. An
agent interacts with the environment through a trial-and-error process, making mistakes and
learning from them to maximize a reward signal. These approaches have shown groundbreaking
results in a large variety of tasks, such as robotics, game playing, and autonomous driving. How-
ever, one of the significant strengths of DRL, i.e., it requires only a reward signal to learn, can
be, at the same time, a weakness. An agent typically explores the environment deeply to learn
how to accomplish a task efficiently, in some cases generating policies that do not match human
expectations. This training paradigm, combined with the exploitation of deep neural networks
as artificial brains for the agents, often leads to the generation of unpredictable policies. This
approach presents some significant drawbacks. First, unpredictability is usually considered un-
desirable and potentially unsafe in a safety-critical context (i.e., where human safety or expensive
equipment can be involved). Second, an end-to-end unsupervised approach does not allow the
injection of behavioral suggestions that are not limited to safety; but can involve additional
requirements, such as human-friendly behaviors, management of optional subtasks, and more.
Third, providing prior knowledge into the training loop is crucial to obtaining more reliable and
efficient intelligent agents. At the same time, we believe that allowing the agent a proper degree
of freedom to learn new and unforeseen strategies to accomplish a task is necessary and one of
the main strengths of DRL that should not be neglected.

In Part I of the thesis we addressed these problems by improving the classical unconstrained
optimization of DRL, whose objective is the pure maximization of the reward function, to a
constrained optimization approach, where the maximization of the reward signal is subject to
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adherence to some given constraints. Crucially, we are not interested in strictly matching all the
requirements. In contrast, we aim to guarantee a tolerance to the number of violations to avoid
substantial limitations to the exploration of new strategies. To reach this goal, in the first part of
the thesis, we faced two problems: (i) how to encode the requirements; and (ii) how to perform
constrained optimization in the DRL context. We proposed to encode the requirements in the
form of “scenarios” through a formal language, Scenario-Based Programming (SBP). To provide
an intuition, from a high-level perspective, a “scenario” is a sort of finite state machine that
describes the agent’s desired (or undesired) behavior. We then provided a method to translate
these rules into a cost signal for the learning process. Keeping this value below a given threshold
becomes the constraint for our optimization process. To close the loop, we propose to exploit
the lagrangian relaxation of constrained optimization problems to provide an approach that
concurrently maximizes the reward function while limiting the probabilities of violations to the
given rules below a tolerance value.

Formal Verification of DRL Systems Another crucial challenge in safety-critical contexts
is to formally guarantee the respect of the requirements before the deployment in a real-world
context, outside a controlled environment. The black-box nature of the deep neural networks
(DNN), the complex structure, and the non-linearity inherent in these tools make difficult the un-
derstanding and analysis of these systems. Providing formal guarantees about these autonomous
systems’ behavior has been considered only a theoretical problem and practically not feasible
for years. However, the research in this area has recently significantly increased, providing DNN
verification tools that scale well on state-of-the-art neural networks [Katz et al., 2019; Wang
et al., 2021].

In Part II of the thesis, we showed how to apply and extend these approaches to certify DRL
agents, focusing on robotic systems. In particular, we presented a methodology for formally
verifying safety properties involving sequences of actions and interactions with the environment.
Previous methods aim at verifying input-output relations, which is a strong limitation for DRL
agents, where an agent sequentially interacts with the environment performing sequences of
actions. Furthermore, we proposed a method to formally quantify the number of violations of
these properties, generalizing the satisfiability neural network verification problem to a counting
one. We finally presented a novel algorithm to compute a specific metric, the violation rate, to
formally evaluate the safety of the system.

FUTURE DIRECTIONS

Throughout the thesis, we presented a complete pipeline to inject prior knowledge, improve
safety, and provide formal guarantees on the behavior of the systems to obtain reliable and
trustworthy intelligent agents. We validated our approaches by applying our techniques to the
complex robotics problem of mapless navigation, showing that our methodologies are general and
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potentially extendable to other domains; we finally show that our techniques produce policies
that respect a set of requirements without adversely affecting the main objective of the optimiza-
tion. In conclusion, we believe that this thesis is a further step toward the widespread adoption
of intelligent systems in real-world contexts and even for safety-critical tasks. Moreover, the
proposed approaches pave the opportunity of extending the work in numerous ways.

Iterative policy improvement via Constrained DRL Throughout this thesis, we ex-
ploited constrained reinforcement learning to inject prior knowledge into the generated policies,
specifically by designing handcrafting rules that suggest a set of desired behaviors in the training
process. A natural extension is to inject expertise through demonstrations, to obtain a novel
policy improvement approach via Constrained DRL. A possible approach is to exploit a spe-
cific metric that measures the distance between the demonstration and the agent’s behavior
and treats this value as a cost function to minimize for the constrained optimization, obtaining
agents that perform similarly to the demonstrations. The crucial advantage of this approach
is the parameter threshold that represents a tolerance, which allows the agent sometimes to
ignore the demonstration if useful for the maximization of the reward. As an alternative ap-
proach, this distance metric can also be measured in discrete action spaces, for example, by
counting the number of times the agent selects an action that differs from the demonstration in
the same (or similar) conditions. Normalizing this value by the number of steps in an episode,
we estimate the probability for the agent of choosing a different action. The threshold for the
constrained optimization problem represents a bound for this frequency. Moreover, thinking of
this approach in an iterative fashion, we obtain a safe incremental update of the policy. For
example, suppose to have a safe human demonstration that we call π∗, which is suboptimal but
safe by construction. Performing our approach with a strict tolerance threshold for changes, we
obtain an improved policy π0 with a strong bound on disruptive changes. Following the intu-
ition of PPO [Schulman et al., 2017], it is unlikely to obtain catastrophic changes by limiting
the differences between two consecutive policy updates. The new policy can be formally checked
to guarantee its safety, and then the process can be repeated to obtain π1. By iterating this
process, we obtain an improved policy πt at each step, slightly different from the previous safe
policy πt−1, which has been formally analyzed. These solutions should be further analyzed from
a theoretical and an empirical perspective. However, these processes highlight the versatility of
constrained reinforcement learning, which can be extended to solve a large variety of problems.
A final remark on this topic is that it is not limited to human demonstrations. For example, as
a starting policy π∗, a suboptimal planner or even another trained DNN can be used for this
approach.

Managing the Risk Tolerance Managing risk tolerance is a fundamental challenge for the
safety-critical problems we addressed throughout the thesis. In our proposed lagrangian PPO,
we exploited a threshold to modulate the frequency of violations that we are willing to accept. In
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our approach, we estimate the adherence to our behavioral requirements based on the expected
value of the corresponding cost functions. In the recent work from Yang et al. [2022b]), the
authors highlight that considering a constraint respected when the expected value of the cost
function is just below the desired threshold is, in fact, an optimistic practice. The intuition is
that, by definition, the expected value represents the mean of a distribution, and thus, even if the
mean of the distribution is below the given limit, the probability of violating it can still be high.
Given that, a more conservative approach, such as estimating the conditional Value-at-Risk
[Yang et al., 2021], should be preferred for safety-critical tasks (i.e., considering a parameterized
quantile instead of the mean of the distribution). Following this intuition, a possible future
direction is to exploit this concept in our algorithms to modulate the priority of the desired
behavior. For example, one could rank the requirements and provide a more strict tolerance to
the most dangerous actions and a low priority to the behavioral requirements.

Alternative Languages for Defining the Safety Requirements Another interesting chal-
lenge is improving the description language for the safety requirements (i.e., our rules). From
our experiments and case studies, SBP has shown an excellent expressiveness level, and the
generated rules have proven to be easy to write, read and understand; moreover, scenario based
programming (SBP) can encode both positive and negative requirements (i.e., actions to per-
form and to avoid). However, our optimization approach aims to be general and agnostic to
the rules’ encoding. Investigating different formal languages to describe the requirements is an
exciting direction to increase the potential application domains of our constrained optimization
method. A fundamental requirement for the description language is that it must be sound with
the policy gradient theorem by depending only on the current trajectory; the analysis of Chap. 4
shows that SBP respects this requirement, but adopting alternative languages requires further
studies. A possible alternative language is statecharts [Harel, 1987], which can be more intuitive
given its graphical nature, but also classical state-based automata or other Turing-complete
description languages should be considered and analyzed.

Formal Verification of Multi-Agent Systems Future directions also involve the formal
verification part of the thesis. For example, the proposed method for verifying our time-
dependent properties (i.e., multi-step verification) could be extended for the formal verification
of multi-agent systems. The approach presented in Chap. 7 consists in multiplying the neural
network n times, where n is the number of steps of the properties we aim to verify. The network
copies are joined together, where each output at step t directly influences the input at step t+1
to build a bigger and interconnected network. This DNN, built as a chain of smaller networks,
can then be verified with a standard verification tool (e.g., Marabou [Katz et al., 2019]). Fol-
lowing this intuition, a possible future direction is to encode the neural networks that control
different agents in a similar way, where the output of an agent directly affects the input of the
others (and vice versa). Exploiting this configuration, instead of having a copy of the DNN for
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each time step in a sequence, we obtain a bigger network built with the neural controllers of
each agent; relying on this structure, it is possible to verify properties that involve the rela-
tions between a set of agents. For example, suppose two agents are moving straight in parallel
at a distance m; an agent is allowed to turn toward the center but, to avoid a collision, they
can not perform this action together. This approach could be a key asset to devising reliable
decentralized multi-agent reinforcement learning approaches.

Approximate Verification Even for state-of-the-art formal verification methods, scalability
is a crucial challenge. An exciting possible future direction is to exploit the formal verification
results to drive the training loop. However, in this scenario, a verification tool should be called
multiple times, introducing overhead and making the training process unfeasible. A possible
solution to investigate is the introduction of an approximated verification method to compute
a specific metric, such as the violation rate introduced in Chap. 6. The idea is to obtain an
estimation of the actual number of violations that can drive the training toward safer regions;
this process is not intended as a replacement for the formal verification but, instead, as a helpful
tool to increase the probability of obtaining safe policies before the model selection phase. A
trivial approximation approach is sampling. Of course, the precision of this solution is strongly
related to the number of samples and the size of the input space. Our intuition is that the
input space can be reduced, through an iterative approach, until it becomes easily manageable
by a formal method. In this setup, providing some formal bounds to the confidence interval is
a crucial challenge.
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